Abstract The evolution of postzygotic isolation is thought to be a key step in maintaining species boundaries upon secondary contact, yet the dynamics and persistence of hybrid incompatibilities in naturally hybridizing species are not well understood. Here, we explore these issues using genetic mapping in three independent populations of recombinant inbred lines between naturally hybridizing monkeyflowers,Mimulus guttatusandMimulus nasutus,from the sympatric Catherine Creek population. We discover that the threeM. guttatusfounders differ dramatically in admixture history, with nearly a quarter of one founder's genome introgressed fromM. nasutus. Comparative genetic mapping in the three RIL populations reveals three new putative inversions, each one segregating among theM. guttatusfounders, two due to admixture. We find strong, genome‐wide transmission ratio distortion in all RILs, but patterns are highly variable among the three populations. At least some of this distortion appears to be explained by epistatic selection favouring parental genotypes, but tests of inter‐chromosomal linkage disequilibrium also reveal multiple candidate Dobzhansky‐Muller incompatibilities. We also map several genetic loci for hybrid pollen viability, including two interacting pairs that coincide with peaks of distortion. Remarkably, even with this limited sample of threeM. guttatuslines, we discover abundant segregating variation for hybrid incompatibilities withM. nasutus,suggesting this population harbours diverse contributors to postzygotic isolation. Moreover, even with substantial admixture, hybrid incompatibilities betweenMimulusspecies persist, suggesting postzygotic isolation might be a potent force in maintaining species barriers in this system.
more »
« less
Patterns of genomic variation reveal a single evolutionary origin of the wild allotetraploid Mimulus sookensis
Abstract Polyploidy occurs across the tree of life and is especially common in plants. Because newly formed cytotypes are often incompatible with their progenitors, polyploidy is also said to trigger “instantaneous” speciation. If a polyploid can self-fertilize or reproduce asexually, it is even possible for one individual to produce an entirely new lineage, but how often this scenario occurs is unclear. Here, we investigate the evolutionary history of the wild allotetraploid Mimulus sookensis, which was formed through hybridization between self-compatible, diploid species in the Mimulus guttatus complex. We generate a chromosome-scale reference assembly for M. sookensis and define its distinct subgenomes. Despite previous reports suggesting multiple origins of this highly selfing polyploid, we discover patterns of population genomic variation that provide unambiguous support for a single origin. One M. sookensis subgenome is clearly derived from the selfer Mimulus nasutus, which organellar variation suggests is the maternal progenitor. The ancestor of the other subgenome is less certain, but it shares variation with both Mimulus decorus and M. guttatus, two outcrossing diploids with geographic ranges that overlap broadly with M. sookensis. This study establishes M. sookensis as an example of instantaneous speciation, likely facilitated by the polyploid’s predisposition to self-fertilize.
more »
« less
- Award ID(s):
- 1856180
- PAR ID:
- 10527815
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Evolution
- Volume:
- 78
- Issue:
- 8
- ISSN:
- 0014-3820
- Format(s):
- Medium: X Size: p. 1464-1477
- Size(s):
- p. 1464-1477
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Yellow monkeyflowers (Mimulus guttatuscomplex, Phrymaceae) are a powerful system for studying ecological adaptation, reproductive variation, and genome evolution. To initiate pan‐genomics in this group, we present four chromosome‐scale assemblies and annotations of accessions spanning a broad evolutionary spectrum: two from a singleM. guttatuspopulation, one from the closely related selfing speciesM. nasutus, and one from a more divergent speciesM. tilingii. All assemblies are highly complete and resolve centromeric and repetitive regions. Comparative analyses reveal such extensive structural variation in repeat‐rich, gene‐poor regions that large portions of the genome are unalignable across accessions. As a result, thisMimuluspan‐genome is primarily informative in genic regions, underscoring limitations of resequencing approaches in such polymorphic taxa. We document gene presence–absence, investigate the recombination landscape using high‐resolution linkage data, and quantify nucleotide diversity. Surprisingly, pairwise differences at fourfold synonymous sites are exceptionally high—even in regions of very low recombination—reaching ~3.2% within a singleM. guttatuspopulation, ~7% within the interfertileM. guttatusspecies complex (approximately equal to SNP divergence between great apes and Old World monkeys), and ~7.4% between that complex and the reproductively isolatedM. tilingii. Genome‐wide patterns of nucleotide variation show little evidence of linked selection, and instead suggest that the concentration of genes (and likely selected sites) in high‐recombination regions may buffer diversity loss. These assemblies, annotations, and comparative analyses provide a robust genomic foundation forMimulusresearch and offer new insights into the interplay of recombination, structural variation, and molecular evolution in highly diverse plant genomes.more » « less
-
Abstract Teleost fishes, which are the largest and most diverse group of living vertebrates, have a rich history of ancient and recent polyploidy. Previous studies of allotetraploid common carp and goldfish (cyprinids) reported a dominant subgenome, which is more expressed and exhibits biased gene retention. However, the underlying mechanisms contributing to observed ‘subgenome dominance’ remains poorly understood. Here we report high-quality genomes of twenty-one cyprinids to investigate the origin and subsequent subgenome evolution patterns following three independent allopolyploidy events. We identify the closest extant relatives of the diploid progenitor species, investigate genetic and epigenetic differences among subgenomes, and conclude that observed subgenome dominance patterns are likely due to a combination of maternal dominance and transposable element densities in each polyploid. These findings provide an important foundation to understanding subgenome dominance patterns observed in teleost fishes, and ultimately the role of polyploidy in contributing to evolutionary innovations.more » « less
-
Abstract Endosperm is an angiosperm innovation central to their reproduction whose development, and thus seed viability, is controlled by genomic imprinting, where expression from certain genes is parent-specific. Unsuccessful imprinting has been linked to failed inter-specific and inter-ploidy hybridization. Despite their importance in plant speciation, the underlying mechanisms behind these endosperm-based barriers remain poorly understood. Here, we describe one such barrier between diploid Mimulus guttatus and tetraploid Mimulus luteus. The two parents differ in endosperm DNA methylation, expression dynamics, and imprinted genes. Hybrid seeds suffer from underdeveloped endosperm, reducing viability, or arrested endosperm and seed abortion when M. guttatus or M. luteus is seed parent, respectively, and transgressive methylation and expression patterns emerge. The two inherited M. luteus subgenomes, genetically distinct but epigenetically similar, are expressionally dominant over the M. guttatus genome in hybrid embryos and especially their endosperm, where paternal imprints are perturbed. In aborted seeds, de novo methylation is inhibited, potentially owing to incompatible paternal instructions of imbalanced dosage from M. guttatus imprints. We suggest that diverged epigenetic/regulatory landscapes between parental genomes induce epigenetic repatterning and global shifts in expression, which, in endosperm, may uniquely facilitate incompatible interactions between divergent imprinting schemes, potentially driving rapid barriers.more » « less
-
Abstract Polyploidy (genome duplication) is a pivotal force in evolution. However, the interactions between parental genomes in a polyploid nucleus, frequently involving subgenome dominance, are poorly understood. Here we showcase analyses of a bamboo system (Poaceae: Bambusoideae) comprising a series of lineages from diploid (herbaceous) to tetraploid and hexaploid (woody), with 11 chromosome-level de novo genome assemblies and 476 transcriptome samples. We find that woody bamboo subgenomes exhibit stunning karyotype stability, with parallel subgenome dominance in the two tetraploid clades and a gradual shift of dominance in the hexaploid clade. Allopolyploidization and subgenome dominance have shaped the evolution of tree-like lignified culms, rapid growth and synchronous flowering characteristic of woody bamboos as large grasses. Our work provides insights into genome dominance in a remarkable polyploid system, including its dependence on genomic context and its ability to switch which subgenomes are dominant over evolutionary time.more » « less
An official website of the United States government
