Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Non-equilibrium inductively coupled plasmas (ICPs) operating in hydrogen are of significant interest for applications including large-area materials processing. Increasing control of spatial gas heating, which drives the formation of neutral species density gradients and the rate of gas-temperature-dependent reactions, is critical. In this study, we use 2D fluid-kinetic simulations with the Hybrid Plasma Equipment Model to investigate the spatially resolved production of atomic hydrogen in a low-pressure planar ICP operating in pure hydrogen (10–20 Pa or 0.075–0.15 Torr, 300 W). The reaction set incorporates self-consistent calculation of the spatially resolved gas temperature and 14 vibrationally excited states. We find that the formation of neutral-gas density gradients, which result from spatially non-uniform electrical power deposition at constant pressure, can drive significant variations in the vibrational distribution function and density of atomic hydrogen when gas heating is spatially resolved. This highlights the significance of spatial gas heating on the production of reactive species in relatively high-power-density plasma processing sources.more » « less
-
Low-temperature plasmas (LTPs) are essential to manufacturing devices in the semiconductor industry, from creating extreme ultraviolet photons used in the most advanced lithography to thin film etching, deposition, and surface modifications. It is estimated that 40%–45% of all process steps needed to manufacture semiconductor devices use LTPs in one form or another. LTPs have been an enabling technology in the multidecade progression of the shrinking of device dimensions, often referred to as Moore’s law. New challenges in circuit and device design, novel materials, and increasing demands to achieve environmentally benign processing technologies require advances in plasma technology beyond the current state-of-the-art. The Department of Energy Office of Science Fusion Energy Sciences held a workshop titled Plasma Science for Microelectronics Nanofabrication in August 2022 to discuss the plasma science challenges and technical barriers that need to be overcome to continue to develop the innovative plasma technologies required to support and advance the semiconductor industry. One of the key outcomes of the workshop was identifying a set of priority research opportunities (PROs) to focus attention on the most strategic plasma science challenges to address to benefit the semiconductor industry. For each PRO, scientific challenges and recommended strategies to address those challenges were identified. This article summarizes the PROs identified by the workshop participants.more » « less
-
Plasma etching is an essential semiconductor manufacturing technology required to enable the current microelectronics industry. Along with lithographic patterning, thin-film formation methods, and others, plasma etching has dynamically evolved to meet the exponentially growing demands of the microelectronics industry that enables modern society. At this time, plasma etching faces a period of unprecedented changes owing to numerous factors, including aggressive transition to three-dimensional (3D) device architectures, process precision approaching atomic-scale critical dimensions, introduction of new materials, fundamental silicon device limits, and parallel evolution of post-CMOS approaches. The vast growth of the microelectronics industry has emphasized its role in addressing major societal challenges, including questions on the sustainability of the associated energy use, semiconductor manufacturing related emissions of greenhouse gases, and others. The goal of this article is to help both define the challenges for plasma etching and point out effective plasma etching technology options that may play essential roles in defining microelectronics manufacturing in the future. The challenges are accompanied by significant new opportunities, including integrating experiments with various computational approaches such as machine learning/artificial intelligence and progress in computational approaches, including the realization of digital twins of physical etch chambers through hybrid/coupled models. These prospects can enable innovative solutions to problems that were not available during the past 50 years of plasma etch development in the microelectronics industry. To elaborate on these perspectives, the present article brings together the views of various experts on the different topics that will shape plasma etching for microelectronics manufacturing of the future.more » « less
-
The use of non-sinusoidal waveforms in low pressure capacitively coupled plasmas intended for microelectronics fabrication has the goal of customizing ion and electron energy and angular distributions to the wafer. One such non-sinusoidal waveform uses the sum of consecutive harmonics of a fundamental sinusoidal frequency, f0, having a variable phase offset between the fundamental and even harmonics. In this paper, we discuss results from a computational investigation of the relation between ion energy and DC self-bias when varying the fundamental frequency f0 for capacitively coupled plasmas sustained in Ar/CF4/O2 and how those trends translate to a high aspect ratio etching of trenches in SiO2. The fundamental frequency, f0, was varied from 1 to 10 MHz and the relative phase from 0° to 180°. Two distinct regimes were identified. Average ion energy onto the wafer is strongly correlated with the DC self-bias at high f0, with there being a maximum at φ = 0° and minimum at φ = 180°. In the low frequency regime, this correlation is weak. Average ion energy onto the wafer is instead dominated by dynamic transients in the applied voltage waveforms, with a maximum at φ = 180° and minimum at φ = 0°. The trends in ion energy translate to etch properties. In both, the high and low frequency regimes, higher ion energies translate to higher etch rates and generally preferable final features, though behaving differently with phase angle.more » « less
-
Electronegative inductively coupled plasmas (ICPs) are used for conductor etching in the microelectronics industry for semiconductor fabrication. Pulsing of the antenna power and bias voltages provides additional control for optimizing plasma–surface interactions. However, pulsed ICPs are susceptible to capacitive-to-inductive mode transitions at the onset of the power pulse due to there being low electron densities at the end of the prior afterglow. The capacitive (E) to inductive (H) mode transition is sensitive to the spatial configuration of the plasma at the end of the prior afterglow, circuit (matchbox) settings, operating conditions, and reactor configurations, including antenna geometry. In this paper, we discuss results from a computational investigation of E–H transitions in pulsed ICPs sustained in Ar/Cl2 and Ar/O2 gas mixtures while varying operating conditions, including gas mixture, pulse repetition frequency, duty cycle of the power pulse, and antenna geometry. Pulsed ICPs sustained in Ar/Cl2 mixtures are prone to significant E–H transitions due to thermal dissociative attachment reactions with Cl2 during the afterglow which reduce pre-pulse electron densities. These abrupt E–H transitions launch electrostatic waves from the formation of a sheath at the boundaries of the plasma and under the antenna in particular. The smoother E–H transitions observed for Ar/O2 mixture results from the higher electron density at the start of the power pulse due to the lack of thermal electron attaching reactions to O2. Ion energy and angular distributions (IEADs) incident onto the wafer and the dielectric window under the antenna are discussed. The shape of the antenna influences the severity of the E–H transition and the IEADs, with antennas having larger surface areas facing the plasma producing larger capacitive coupling. Validation of the model is performed by comparison of computed electron densities with experimental measurements.more » « less
-
The quality of high aspect ratio (HAR) features etched into dielectrics for microelectronics fabrication using halogen containing low temperature plasmas strongly depends on the energy and angular distribution of the incident ions (IEAD) onto the wafer, as well as potentially that of the electrons (EEAD). Positive ions, accelerated to high energies by the sheath electric field, have narrow angular spreads and can penetrate deeply into HAR features. Electrons typically arrive at the wafer with nearly thermal energy and isotropic angular distributions and so do not directly penetrate deeply into features. These differences can lead to positive charging of the insides of the features that can slow etching rates and produce geometric defects such as twisting. In this work, we computationally investigated the plasma etching of HAR features into SiO 2 using tailored voltage waveforms in a geometrically asymmetric capacitively coupled plasma sustained in an Ar/CF 4 /O 2 mixture at 40 mTorr. The tailored waveform consisted of a sinusoidal wave and its higher harmonics with a fundamental frequency of 1 MHz. We found that some degree of control of the IEADs and EEADs is possible by adjusting the phase of higher harmonics φ through the resulting generation of electrical asymmetry and electric field reversal. However, the IEADs and EEADs cannot easily be separately controlled. The control of IEADs and EEADs is inherently linked. The highest quality feature was obtained with a phase angle φ = 0° as this value generated the largest (most negative) DC self-bias and largest electric field reversal for accelerating electrons into the feature. That said, the consequences of voltage waveform tailoring (VWT) on etched features are dominated by the change in the IEADs. Although VWT does produce EEADs with higher energy and narrower angular spread, the effect of these electrons on the feature compared to thermal electrons is not large. This smaller impact of VWT produced EEADs is attributed to thermal electrons being accelerated into the feature by electric fields produced by the positive in-feature charging.more » « less
-
Low-temperature plasmas have seen increasing use for synthesizing high-quality, mono-disperse nanoparticles (NPs). Recent work has highlighted that an important process in NP growth in plasmas is particle trapping—small, negatively charged nanoparticles become trapped by the positive electrostatic potential in the plasma, even if only momentarily charged. In this article, results are discussed from a computational investigation into how pulsing the power applied to an inductively coupled plasma (ICP) reactor may be used for controlling the size of NPs synthesized in the plasma. The model system is an ICP at 1 Torr to grow silicon NPs from an Ar/SiH 4 gas mixture. This system was simulated using a two-dimensional plasma hydrodynamics model coupled to a three-dimensional kinetic NP growth and trajectory tracking model. The effects of pulse frequency and pulse duty cycle are discussed. We identified separate regimes of pulsing where particles become trapped for one pulsed cycle, a few cycles, and many cycles—each having noticeable effects on particle size distributions. For the same average power, pulsing can produce a stronger trapping potential for particles when compared to continuous wave power, potentially increasing particle mono-dispersity. Pulsing may also offer a larger degree of control over particle size for the same average power. Experimental confirmation of predicted trends is discussed.more » « less
-
Low temperature plasmas are an emerging method to synthesize high quality nanoparticles (NPs). An established and successful technique to produce NPs is using a capacitively coupled plasma (CCP) in cylindrical geometry. Although a robust synthesis technique, optimizing or specifying NP properties using CCPs, is challenging. In this paper, results from a computational investigation for the growth of silicon NPs in flowing inductively coupled plasmas (ICPs) using Ar/SiH4 gas mixtures of up to a few Torr are discussed. ICPs produce more locally constrained and quiescent plasma potentials. These positive plasma potentials produce an electrostatic trap for negatively charged NPs, which can significantly extend the residence time of NPs in the plasma, which in turn provides a controllable period for particle growth. The computational platforms used in this study consist of a two-dimensional plasma hydrodynamics model, a three-dimensional nanoparticle growth and trajectory tracking model, and a molecular dynamics simulation for deriving reactive sticking coefficients of silane radicals on Si NPs. Trends for the nanoparticle growth as a function of SiH4 inlet fraction, gas residence time, energy deposition per particle, pressure, and reactor diameter are discussed. The general path for particle synthesis is the trapping of small NPs in the positive electrostatic potential, followed by entrainment in the gas flow upon reaching a critical particle size. Optimizing or controlling NP synthesis then depends on the spatial distribution of plasma potential, the density of growth species, and the relative time that particles spend in the electrostatic trap and flowing through higher densities of growth species upon leaving the trap.more » « less
An official website of the United States government
