skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 30, 2025

Title: Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
The susceptibility of modern machine learning classifiers to adversarial examples has motivated theoretical results suggesting that these might be unavoidable. However, these results can be too general to be applicable to natural data distributions. Indeed, humans are quite robust for tasks involving vision. This apparent conflict motivates a deeper dive into the question: Are adversarial examples truly unavoidable? In this work, we theoretically demonstrate that a key property of the data distribution – concentration on small-volume subsets of the input space – determines whether a robust classifier exists. We further demonstrate that, for a data distribution concentrated on a union of low-dimensional linear subspaces, utilizing structure in data naturally leads to classifiers that enjoy data-dependent polyhedral robustness guarantees, improving upon methods for provable certification in certain regimes.  more » « less
Award ID(s):
2212457
PAR ID:
10528042
Author(s) / Creator(s):
; ;
Editor(s):
Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S
Publisher / Repository:
NeurIPS
Date Published:
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Why are classifiers in high dimension vulnerable to “adversarial” perturbations? We show that it is likely not due to information theoretic limitations, but rather it could be due to computational constraints. First we prove that, for a broad set of classification tasks, the mere existence of a robust classifier implies that it can be found by a possibly exponential-time algorithm with relatively few training examples. Then we give two particular classification tasks where learning a robust classifier is computationally intractable. More precisely we construct two binary classifications task in high dimensional space which are (i) information theoretically easy to learn robustly for large perturbations, (ii) efficiently learnable (nonrobustly) by a simple linear separator, (iii) yet are not efficiently robustly learnable, even for small perturbations. Specifically, for the first task hardness holds for any efficient algorithm in the statistical query (SQ) model, while for the second task we rule out any efficient algorithm under a cryptographic assumption. These examples give an exponential separation between classical learning and robust learning in the statistical query model or under a cryptographic assumption. It suggests that adversarial examples may be an unavoidable byproduct of computational limitations of learning algorithms. 
    more » « less
  2. Models produced by machine learning, particularly deep neural networks, are state-of-the-art for many machine learning tasks and demonstrate very high prediction accuracy. Unfortunately, these models are also very brittle and vulnerable to specially crafted adversarial examples. Recent results have shown that accuracy of these models can be reduced from close to hundred percent to below 5\% using adversarial examples. This brittleness of deep neural networks makes it challenging to deploy these learning models in security-critical areas where adversarial activity is expected, and cannot be ignored. A number of methods have been recently proposed to craft more effective and generalizable attacks on neural networks along with competing efforts to improve robustness of these learning models. But the current approaches to make machine learning techniques more resilient fall short of their goal. Further, the succession of new adversarial attacks against proposed methods to increase neural network robustness raises doubts about a foolproof approach to robustify machine learning models against all possible adversarial attacks. In this paper, we consider the problem of detecting adversarial examples. This would help identify when the learning models cannot be trusted without attempting to repair the models or make them robust to adversarial attacks. This goal of finding limitations of the learning model presents a more tractable approach to protecting against adversarial attacks. Our approach is based on identifying a low dimensional manifold in which the training samples lie, and then using the distance of a new observation from this manifold to identify whether this data point is adversarial or not. Our empirical study demonstrates that adversarial examples not only lie farther away from the data manifold, but this distance from manifold of the adversarial examples increases with the attack confidence. Thus, adversarial examples that are likely to result into incorrect prediction by the machine learning model is also easier to detect by our approach. This is a first step towards formulating a novel approach based on computational geometry that can identify the limiting boundaries of a machine learning model, and detect adversarial attacks. 
    more » « less
  3. Neural models enjoy widespread use across a variety of tasks and have grown to become crucial components of many industrial systems. Despite their effectiveness and ex- tensive popularity, they are not without their exploitable flaws. Initially applied to computer vision systems, the generation of adversarial examples is a process in which seemingly imper- ceptible perturbations are made to an image, with the purpose of inducing a deep learning based classifier to misclassify the image. Due to recent trends in speech processing, this has become a noticeable issue in speech recognition models. In late 2017, an attack was shown to be quite effective against the Speech Commands classification model. Limited-vocabulary speech classifiers, such as the Speech Commands model, are used quite frequently in a variety of applications, particularly in managing automated attendants in telephony contexts. As such, adversarial examples produced by this attack could have real-world consequences. While previous work in defending against these adversarial examples has investigated using audio preprocessing to reduce or distort adversarial noise, this work explores the idea of flooding particular frequency bands of an audio signal with random noise in order to detect adversarial examples. This technique of flooding, which does not require retraining or modifying the model, is inspired by work done in computer vision and builds on the idea that speech classifiers are relatively robust to natural noise. A combined defense incorporating 5 different frequency bands for flooding the signal with noise outperformed other existing defenses in the audio space, detecting adversarial examples with 91.8% precision and 93.5% recall. 
    more » « less
  4. null (Ed.)
    As deep neural networks (DNNs) achieve extraordi- nary performance in a wide range of tasks, testing their robust- ness under adversarial attacks becomes paramount. Adversarial attacks, also known as adversarial examples, are used to measure the robustness of DNNs and are generated by incorporating imperceptible perturbations into the input data with the intention of altering a DNN’s classification. In prior work in this area, most of the proposed optimization based methods employ gradient descent to find adversarial examples. In this paper, we present an innovative method which generates adversarial examples via convex programming. Our experiment results demonstrate that we can generate adversarial examples with lower distortion and higher transferability than the C&W attack, which is the current state-of-the-art adversarial attack method for DNNs. We achieve 100% attack success rate on both the original undefended models and the adversarially-trained models. Our distortions of the L∞ attack are respectively 31% and 18% lower than the C&W attack for the best case and average case on the CIFAR-10 data set. 
    more » « less
  5. Deep Neural Networks (DNNs) have shown phenomenal success in a wide range of real-world applications. However, a concerning weakness of DNNs is that they are vulnerable to adversarial attacks. Although there exist methods to detect adversarial attacks, they often suffer constraints on specific attack types and provide limited information to downstream systems. We specifically note that existing adversarial detectors are often binary classifiers, which differentiate clean or adversarial examples. However, detection of adversarial examples is much more complicated than such a scenario. Our key insight is that the confidence probability of detecting an input sample as an adversarial example will be more useful for the system to properly take action to resist potential attacks. In this work, we propose an innovative method for fast confidence detection of adversarial attacks based on integrity of sensor pattern noise embedded in input examples. Experimental results show that our proposed method is capable of providing a confidence distribution model of most of popular adversarial attacks. Furthermore, our presented method can provide early attack warning with even the attack types based on different properties of the confidence distribution models. Since fast confidence detection is a computationally heavy task, we propose an FPGA-Based hardware architecture based on a series of optimization techniques, such as incremental multi-level quantization and etc. We realize our proposed method on an FPGA platform and achieve a high efficiency of 29.740 IPS/W with a power consumption of only 0.7626W. 
    more » « less