- PAR ID:
- 10528078
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Editor(s):
- Vishniac, E; Muench, A
- Publisher / Repository:
- The Bulletin of the American Astronomical Society (BAAS)
- Date Published:
- Journal Name:
- The Bulletin of the American Astronomical Society
- ISSN:
- 0002-7537
- Subject(s) / Keyword(s):
- Decadal Survey Interhemispheric Asymmetries
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)A bstract A comprehensive set of azimuthal single-spin and double-spin asymmetries in semi-inclusive leptoproduction of pions, charged kaons, protons, and antiprotons from transversely polarized protons is presented. These asymmetries include the previously published HERMES results on Collins and Sivers asymmetries, the analysis of which has been extended to include protons and antiprotons and also to an extraction in a three-dimensional kinematic binning and enlarged phase space. They are complemented by corresponding results for the remaining four single-spin and four double-spin asymmetries allowed in the one-photon-exchange approximation of the semi-inclusive deep-inelastic scattering process for target-polarization orientation perpendicular to the direction of the incoming lepton beam. Among those results, significant non-vanishing cos ( ϕ−ϕ S ) modulations provide evidence for a sizable worm-gear (II) distribution, $$ {g}_{1\mathrm{T}}^q\left(x,{\mathrm{p}}_T^2\right) $$ g 1 T q x p T 2 . Most of the other modulations are found to be consistent with zero with the notable exception of large sin ( ϕ S ) modulations for charged pions and K + .more » « less
-
He, Jian_Jun (Ed.)Geomagnetic Ultra Low Frequency (ULF) are terrestrial manifestations of the propagation of very low frequency magnetic fluid waves in the magnetosphere, and it is critical to develop near real-time space weather products to monitor these geomagnetic disturbances. A wavelet-based index is described in this paper and applied to study geomagnetic ULF pulsations observed in Antarctica and their magnetically conjugate locations in West Greenland. Results showed that (1) the index is effective for identification of pulsation events in the Pc4–Pc5 frequency range, including transient events, and measures important characteristics of ULF pulsations in both the temporal and frequency domains. (2) Comparison between conjugate locations reveals the similarities and differences between ULF pulsations in northern and southern hemispheres during solstice conditions, when the largest asymmetries are expected. Results also showed that the geomagnetic pulsations at conjugate locations respond differently according to the Interplanetary Magnetic Field condition, magnetic field topology, magnetic latitude of the observation, and other conditions. The actual magnetospheric and ionospheric configurations and driving conditions in the case need to be further studied.more » « less
-
Abstract On 3 February 2022, SpaceX launched 49 Starlink satellites, 38 of which unexpectedly de‐orbited. Although this event was attributed to space weather, definitive causality remained elusive because space weather conditions were not extreme. In this study, we identify solar sources of the interplanetary coronal mass ejections that were responsible for the geomagnetic storms around the time of launch of the Starlink satellites and for the first time, investigate their impact on Earth's magnetosphere using magnetohydrodynamic modeling. The model results demonstrate that the satellites were launched into an already disturbed space environment that persisted over several days. However, on performing comparative satellite orbital decay analyses, we find that space weather alone was not responsible but conspired together with a low‐altitude insertion and low satellite mass‐to‐area ratio to precipitate this unusual loss. Our work bridges space weather causality across the Sun–Earth system—with relevance for space‐based human technologies.
-
Space weather, including solar storms, can impact Earth by disturbing the geomagnetic field. Despite the known dependence of birds and other animals on geomagnetic cues for successful seasonal migrations, the potential effects of space weather on organisms that use Earth’s magnetic field for navigation have received little study. We tested whether space weather geomagnetic disturbances are associated with disruptions to bird migration at a macroecological scale. We leveraged long-term radar data to characterize the nightly migration dynamics of the nocturnally migrating North American avifauna over 22 y. We then used concurrent magnetometer data to develop a local magnetic disturbance index associated with each radar station (ΔBmax), facilitating spatiotemporally explicit analyses of the relationship between migration and geomagnetic disturbance. After controlling for effects of atmospheric weather and spatiotemporal patterns, we found a 9 to 17% decrease in migration intensity in both spring and fall during severe space weather events. During fall migration, we also found evidence for decreases in effort flying against the wind, which may represent a depression of active navigation such that birds drift more with the wind during geomagnetic disturbances. Effort flying against the wind in the fall was most reduced under both overcast conditions and high geomagnetic disturbance, suggesting that a combination of obscured celestial cues and magnetic disturbance may disrupt navigation. Collectively, our results provide evidence for community-wide avifaunal responses to geomagnetic disturbances driven by space weather during nocturnal migration.