ABSTRACT Our understanding of stellar structure and evolution coming from one-dimensional (1D) stellar models is limited by uncertainties related to multidimensional processes taking place in stellar interiors. 1D models, however, can now be tested and improved with the help of detailed three-dimensional (3D) hydrodynamics models, which can reproduce complex multidimensional processes over short time-scales, thanks to the recent advances in computing resources. Among these processes, turbulent entrainment leading to mixing across convective boundaries is one of the least understood and most impactful. Here, we present the results from a set of hydrodynamics simulations of the neon-burning shell in a massive star, and interpret them in the framework of the turbulent entrainment law from geophysics. Our simulations differ from previous studies in their unprecedented degree of realism in reproducing the stellar environment. Importantly, the strong entrainment found in the simulations highlights the major flaws of the current implementation of convective boundary mixing in 1D stellar models. This study therefore calls for major revisions of how convective boundaries are modelled in 1D, and in particular the implementation of entrainment in these models. This will have important implications for supernova theory, nucleosynthesis, neutron stars, and black holes physics. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Turbulence modelling in neutron star merger simulations
                        
                    
    
            Abstract Observations of neutron star mergers have the potential to unveil detailed physics of matter and gravity in regimes inaccessible by other experiments. Quantitative comparisons to theory and parameter estimation require nonlinear numerical simulations. However, the detailed physics of energy and momentum transfer between different scales, and the formation and interaction of small scale structures, which can be probed by detectors, are not captured by current simulations. This is where turbulence enters neutron star modelling. This review will outline the theory and current status of turbulence modelling for relativistic neutron star merger simulations. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10528083
- Publisher / Repository:
- Living Reviews in Computational Astrophysics
- Date Published:
- Journal Name:
- Living Reviews in Computational Astrophysics
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2365-0524
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT The coalescence of two neutron stars is accompanied by the emission of gravitational waves, and can also feature electromagnetic counterparts powered by mass ejecta and the formation of a relativistic jet after the merger. Since neutron stars can feature strong magnetic fields, the non-trivial interaction of the neutron star magnetospheres might fuel potentially powerful electromagnetic transients prior to merger. A key process powering those precursor transients is relativistic reconnection in strong current sheets formed between the two stars. In this work, we provide a detailed analysis of how the twisting of the common magnetosphere of the binary leads to an emission of electromagnetic flares, akin to those produced in the solar corona. By means of relativistic force-free electrodynamics simulations, we clarify the role of different magnetic field topologies in the process. We conclude that flaring will always occur for suitable magnetic field alignments, unless one of the neutron stars has a magnetic field significantly weaker than the other.more » « less
- 
            Alfvén waves as excited in black hole accretion disks and neutron star magnetospheres are the building blocks of turbulence in relativistic, magnetized plasmas. A large reservoir of magnetic energy is available in these systems, such that the plasma can be heated significantly even in the weak turbulence regime. We perform high-resolution three-dimensional simulations of counter-propagating Alfvén waves, showing that an $$E_{B_{\perp }}(k_{\perp }) \propto k_{\perp }^{-2}$$ energy spectrum develops as a result of the weak turbulence cascade in relativistic magnetohydrodynamics and its infinitely magnetized (force-free) limit. The plasma turbulence ubiquitously generates current sheets, which act as locations where magnetic energy dissipates. We show that current sheets form as a natural result of nonlinear interactions between counter-propagating Alfvén waves. These current sheets form owing to the compression of elongated eddies, driven by the shear induced by growing higher-order modes, and undergo a thinning process until they break-up into small-scale turbulent structures. We explore the formation of current sheets both in overlapping waves and in localized wave packet collisions. The relativistic interaction of localized Alfvén waves induces both Alfvén waves and fast waves, and efficiently mediates the conversion and dissipation of electromagnetic energy in astrophysical systems. Plasma energization through reconnection in current sheets emerging during the interaction of Alfvén waves can potentially explain X-ray emission in black hole accretion coronae and neutron star magnetospheres.more » « less
- 
            ABSTRACT Understanding what shapes the cold gas component of galaxies, which both provides the fuel for star formation and is strongly affected by the subsequent stellar feedback, is a crucial step towards a better understanding of galaxy evolution. Here, we analyse the H i properties of a sample of 46 Milky Way halo-mass galaxies, drawn from cosmological simulations (EMP-Pathfinder and Firebox). This set of simulations comprises galaxies evolved self-consistently across cosmic time with different baryonic sub-grid physics: three different star formation models [constant star formation efficiency (SFE) with different star formation eligibility criteria, and an environmentally dependent, turbulence-based SFE] and two different feedback prescriptions, where only one sub-sample includes early stellar feedback. We use these simulations to assess the impact of different baryonic physics on the H i content of galaxies. We find that the galaxy-wide H i properties agree with each other and with observations. However, differences appear for small-scale properties. The thin H i discs observed in the local universe are only reproduced with a turbulence-dependent SFE and/or early stellar feedback. Furthermore, we find that the morphology of H i discs is particularly sensitive to the different physics models: galaxies simulated with a turbulence-based SFE have discs that are smoother and more rotationally symmetric, compared to those simulated with a constant SFE; galaxies simulated with early stellar feedback have more regular discs than supernova-feedback-only galaxies. We find that the rotational asymmetry of the H i discs depends most strongly on the underlying physics model, making this a promising observable for understanding the physics responsible for shaping the interstellar medium of galaxies.more » « less
- 
            ABSTRACT We study the effects of the time-variable properties of thermonuclear X-ray bursts on modelling their millisecond-period burst oscillations. We apply the pulse profile modelling technique that is being used in the analysis of rotation-powered millisecond pulsars by the Neutron Star Interior Composition Explorer to infer masses, radii, and geometric parameters of neutron stars. By simulating and analysing a large set of models, we show that overlooking burst time-scale variability in temperatures and sizes of the hot emitting regions can result in substantial bias in the inferred mass and radius. To adequately infer neutron star properties, it is essential to develop a model for the time-variable properties or invest a substantial amount of computational time in segmenting the data into non-varying pieces. We discuss prospects for constraints from proposed future X-ray telescopes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
