skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics and Origins of the Near-resonant Kepler Planets
Abstract Short-period super-Earths and mini-Neptunes encircle more than ∼50% of Sun-like stars and are relatively amenable to direct observational characterization. Despite this, environments in which these planets accrete are difficult to probe directly. Nevertheless, pairs of planets that are close to orbital resonances provide a unique window into the inner regions of protoplanetary disks, as they preserve the conditions of their formation, as well as the early evolution of their orbital architectures. In this work, we present a novel approach toward quantifying transit timing variations within multiplanetary systems and examine the near-resonant dynamics of over 100 planet pairs detected by Kepler. Using an integrable model for first-order resonances, we find a clear transition from libration to circulation of the resonant angle at a period ratio of ≈0.6% wide of exact resonance. The orbital properties of these systems indicate that they systematically lie far away from the resonant forced equilibrium. Cumulatively, our modeling indicates that while orbital architectures shaped by strong disk damping or tidal dissipation are inconsistent with observations, a scenario where stochastic stirring by turbulent eddies augments the dissipative effects of protoplanetary disks reproduces several features of the data.  more » « less
Award ID(s):
2109276
PAR ID:
10528115
Author(s) / Creator(s):
;
Publisher / Repository:
AAS Journals
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract TESS and Kepler have revealed that practically all close-in sub-Neptunes form in mean-motion resonant chains, most of which unravel on timescales of 100 Myr. UsingN-body integrations, we study how planetary collisions from destabilized resonant chains produce the orbital period distribution observed among mature systems, focusing on the resonant fine structures remaining post-instability. In their natal chains, planets near first-order resonances have period ratios just wide of perfect commensurability, driven there by disk migration and eccentricity damping. Sufficiently large resonant libration amplitudes are needed to trigger instability. Ensuing collisions between planets (“major mergers”) erode but do not eliminate resonant pairs; surviving pairs show up as narrow “peaks” just wide of commensurability in the histogram of neighboring-planet period ratios. Merger products exhibit a broad range of period ratios, filling the space between relatively closely separated resonances such as the 5:4, 4:3, and 3:2, but failing to bridge the wider gap between the 3:2 and 2:1—a “trough” thus manifests just short of the 2:1 resonance, as observed. Major mergers generate debris that undergoes “minor mergers” with planets, in many cases further widening resonant pairs. With all this dynamical activity, free eccentricities of resonant pairs, and by extension the phases of their transit timing variations, are readily excited. Nonresonant planets, being merger products, are predicted to have higher masses than resonant planets, as observed. At the same time, a small fraction of mergers produce a high-mass tail in the resonant population, also observed. 
    more » « less
  2. Abstract Compact nonresonant systems of sub-Jovian planets are the most common outcome of the planet formation process. Despite exhibiting broad overall diversity, these planets also display dramatic signatures of intrasystem uniformity in their masses, radii, and orbital spacings. Although the details of their formation and early evolution are poorly known, sub-Jovian planets are expected to emerge from their natal nebulae as multiresonant chains, owing to planet–disk interactions. Within the context of this scenario, the architectures of observed exoplanet systems can be broadly replicated if resonances are disrupted through postnebular dynamical instabilities. Here, we generate an ad hoc sample of resonant chains and use a suite of N -body simulations to show that instabilities can not only reproduce the observed period ratio distribution, but that the resulting collisions also modify the mass uniformity in a way that is consistent with the data. Furthermore, we demonstrate that primordial mass uniformity, motivated by the sample of resonant chains coupled with dynamical sculpting, naturally generates uniformity in orbital period spacing similar to what is observed. Finally, we find that almost all collisions lead to perfect mergers, but some form of postinstability damping is likely needed to fully account for the present-day dynamically cold architectures of sub-Jovian exoplanets. 
    more » « less
  3. Abstract Protoplanetary disks can exhibit asymmetric temperature variations due to phenomena such as shadows cast by the inner disk or localized heating by young planets. We investigate the disk features induced by these asymmetric temperature variations. We find that spirals are initially excited, and then break into two and reconnect to form rings. By carrying out linear analyses, we first study the spiral launching mechanism and find that the effects of azimuthal temperature variations share similarities with effects of external potentials. Specifically, rotating temperature variations launch steady spiral structures at Lindblad resonances, which corotate with the temperature patterns. When the cooling time exceeds the orbital period, these spiral structures are significantly weakened, and a checkerboard pattern may appear. A temperature variation of about 10% can induce spirals with order unity density perturbations, comparable to those generated by a thermal mass planet. We then study ring formation and find it is related to the coupling between azimuthal temperature variations and spirals outside the resonances. Such coupling leads to a radially varying angular momentum flux, which produces anomalous wave-driven accretion and forms dense rings separated by the wavelength of the waves. Finally, we speculate that spirals induced by temperature variations may contribute to disk accretion through nonlinear wave steepening and dissipation. Overall, considering that irradiation determines the temperature structure of protoplanetary disks, the change of irradiation both spatially or/and temporarily may produce observable effects in protoplanetary disks, especially spirals and rings in outer disks beyond tens of au. 
    more » « less
  4. Abstract We present the discovery of TOI-6303b and TOI-6330b, two massive transiting super-Jupiters orbiting a M0 and a M2 dwarf star, respectively, as part of the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) survey. These were detected by NASA’s Transiting Exoplanet Survey Satellite and then confirmed via ground-based photometry and radial velocity observations with the Habitable-zone Planet Finder. TOI-6303b has a mass of 7.84 ± 0.31MJ, a radius of 1.03 ± 0.06RJ, and an orbital period of 9.485 days. TOI-6330b has a mass of 10.00 ± 0.31MJ, a radius of 0.97 ± 0.03RJ, and an orbital period of 6.850 days. We put these planets in the context of super-Jupiters around M dwarfs discovered from radial-velocity surveys, as well as recent discoveries from astrometry. These planets have masses that can be attributed to two dominant planet formation mechanisms—gravitational instability and core accretion. Their masses necessitate massive protoplanetary disks that should either be gravitationally unstable, i.e., forming through gravitational instability, or be among the most massive protoplanetary disks known to date to form objects through core accretion. We also discuss their possible migration mechanisms via their eccentricity distribution. 
    more » « less
  5. Abstract Before the launch of the Kepler Space Telescope, models of low-mass planet formation predicted that convergent type I migration would often produce systems of low-mass planets in low-order mean-motion resonances. Instead, Kepler discovered that systems of small planets frequently have period ratios larger than those associated with mean-motion resonances and rarely have period ratios smaller than those associated with mean-motion resonances. Both short-timescale processes related to the formation or early evolution of planetary systems and long-timescale secular processes have been proposed as explanations for these observations. Using a thin disk stellar population’s Galactic velocity dispersion as a relative age proxy, we find that Kepler-discovered multiple-planet systems with at least one planet pair near a period ratio suggestive of a second-order mean-motion resonance have a colder Galactic velocity dispersion and are therefore younger than both single-transiting and multiple-planet systems that lack planet pairs consistent with mean-motion resonances. We argue that a nontidal secular process with a characteristic timescale no less than a few hundred Myr is responsible for moving systems of low-mass planets away from second-order mean-motion resonances. Among systems with at least one planet pair near a period ratio suggestive of a first-order mean-motion resonance, only the population of systems likely affected by tidal dissipation inside their innermost planets has a small Galactic velocity dispersion and is therefore young. We predict that period ratios suggestive of mean-motion resonances are more common in young systems with 10 Myr ≲τ≲ 100 Myr and become less common as planetary systems age. 
    more » « less