Friction surfacing technique is a thermo-mechanical approach for metallic deposition, suitable for a broad range of materials and applications. Friction surfacing can be employed for various industrial purposes such as coating, welding, repairing defective parts, surface hardening, and improving corrosion performance. In this technique, frictional heat generated at the interface of the consumable tool and substrate results in a severe plastic deformation at the end of the rod, enabling the deposition of a consumable material on the substrate surface. In this investigation, a novel method in friction surfacing, lateral friction surfacing, is employed to deposit the aluminum coatings. In this novel approach, the side of the consumable tool is pressed against the surface of the substrate, and the material transfer happens from the lateral surface of the tool. This technique provides extremely thin and smooth deposits, which are more consistent compared to the conventional approach of friction surfacing. Moreover, this technique enables fabricating of deposits in lower temperatures, lessening the thermal impacts on the microstructures and mechanical properties of the deposits. In this investigation plates of 1018 mild steel were partially coated with various aluminum alloys and corroded in an accelerated corrosion test chamber. The corrosion performance of the partially coated sample was evaluated by mass loss measurement. It was found that AA5086 offered the most corrosion protection. After 13 cycles of GM9540P test, equivalent to approximately 3½ years exposure at a mild/moderate marine site in Hawaii, almost all of the deposited aluminum was consumed.
more »
« less
A Review on Tribocorrosion Behavior of Aluminum Alloys: From Fundamental Mechanisms to Alloy Design Strategies
Tribocorrosion, a research field that has been evolving for decades, has gained renewed attention in recent years, driven by increased demand for wear- and corrosion-resistant materials from biomedical implants, nuclear power generation, advanced manufacturing, batteries, marine and offshore industries, etc. In the United States, wear and corrosion are estimated to cost nearly USD 300 billion per year. Among various important structural materials, passive metals such as aluminum alloys are most vulnerable to tribocorrosion due to the wear-accelerated corrosion as a result of passive film removal. Thus, designing aluminum alloys with better tribocorrosion performance is of both scientific and practical importance. This article reviews five decades of research on the tribocorrosion of aluminum alloys, from experimental to computational studies. Special focus is placed on two aspects: (1) The effects of alloying and grain size on the fundamental wear, corrosion, and tribocorrosion mechanisms; and (2) Alloy design strategies to improve the tribocorrosion resistance of aluminum alloys. Finally, the paper sheds light on the current challenges faced and outlines a few future research directions in the field of tribocorrosion of aluminum alloys.
more »
« less
- Award ID(s):
- 2104655
- PAR ID:
- 10528150
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Corrosion and Materials Degradation
- Volume:
- 4
- Issue:
- 4
- ISSN:
- 2624-5558
- Page Range / eLocation ID:
- 594 to 622
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The effect of V addition on the hardness and corrosion of aluminum alloy 2024 (AA2024) produced by high‐energy ball milling has been investigated. High‐energy ball milled alloys exhibited enhanced solid solubility of alloying elements and ultrafine grains. The addition of V improved the corrosion resistance of the AA2024 alloy, which was attributed to the deposition of V on the cathodic particles and therefore decrease in their ability to sustain large cathodic currents.more » « less
-
Abstract Supersaturated solid solutions of Al and corrosion-resistant alloying elements (M: V, Mo, Cr, Ti, Nb), produced by non-equilibrium processing techniques, have been reported to exhibit high corrosion resistance and strength. The corrosion mechanism for such improved corrosion performance has not been well understood. We present a fundamental understanding of the role of V in corrosion of an Al-V alloy, which will provide a theoretical background for developing corrosion-resistant Al alloys. High-energy ball milling of the elemental powder of Al and V produced an in situ consolidated Al-V alloy, which exhibited high solid solubility of V. The corrosion resistance of Al-V alloy was significantly higher than that of pure Al, which was attributed to the (1) enrichment of V at the passive film/substrate interface, (2) incorporation of V into the passive film, and (3) deposition of V on the iron-containing cathodic particles and therefore, retardation of cathodic reaction.more » « less
-
Abstract Additive Friction stir deposition (AFSD) has been extensively utilized for processing Al alloys. The properties of the Al depositions under as-fabricated state, including mechanical strength and corrosion resistance, are typically inferior compared to the base material, especially for heat-treatable alloys. In this research, multilayers of Al7075 composites, reinforced by ceramic particles, were processed by AFSD to evaluate the effect of using feedstock materials containing reinforcing particles on the properties of the deposition. For comparison, a bare Al7075 part was also processed by AFSD under the same conditions. The results of mechanical testing revealed a significant reduction in the microhardness, tensile strength and compression stress of the bare alloy after deposition. However, the composite deposition exhibited only a slight decrease in the properties compared to its feedstock material. Additionally, the corrosion resistance of the composite enhanced after AFSD, in contrast to the bare alloy, where the corrosion resistance deteriorated. Microstructural analysis showed a uniform distribution of the reinforcing particles in the matrix for the deposition, closely resembling that of the feedstock composite. This, along with grain refinement and minimal change in precipitates, were the reasons for the minimum changes in mechanical properties, as well as the improvement in corrosion resistance.more » « less
-
FeCrAl alloys are promising candidates to replace Zr alloys as fuel cladding materials in nuclear light-water reactors. Grain refinement has been indicated to improve irradiation resistance. To enhance corrosion resistance as well, the effects of grain refinement on steam corrosion behavior were investigated in this work. Samples of Kanthal D alloy (Fe-21Cr-5Al) with two different grain sizes (coarse-grained and ultrafine-grained) were exposed to steam at 1200 °C for 2 hrs. Results indicate improved steam corrosion resistance in ultrafine-grained Kanthal D with formation of a thinner protective Al oxide layer and the presence of a thin underlying Cr oxide layer.more » « less
An official website of the United States government

