Abstract With the aim of constructing hydrogen‐bonding networks in synthetic complexes, two new ligands derived fromcis,cis‐1,3,5‐triaminocyclohexane (TACH) have been prepared that feature pendant pyrrole or indole rings as outer‐sphere H‐bond donors. The TACH framework offers a facial arrangement of threeN‐donors, thereby mimicking common coordination motifs in the active sites of nonheme Fe and Cu enzymes. X‐ray structural characterization of a series of CuI‐X complexes (X=F, Cl, Br, NCS) revealed that these neutral ligands (H3LR, R=pyrrole or indole) coordinate in the intended facialN3manner, yielding four‐coordinate complexes with idealizedC3symmetry. The N−H units of the outer‐sphere heterocycles form a hydrogen‐bonding cavity around the axial (pseudo)halide ligand, as verified by crystallographic, spectroscopic, and computational analyses. Treatment of H3Lpyrroleand H3Lindolewith divalent transition metal chlorides (MIICl2, M=Fe, Cu, Zn) causes one heterocycle to deprotonate and coordinate to the M(II) center, giving rise to tetradentate ligands with two remaining outer‐sphere H‐bond donors. Further ligand deprotonation is observed upon reaction with Ni(II) and Cu(II) salts with weakly coordinating counteranions. The reported complexes highlight the versatility of TACH‐based ligands with pendant H‐bond donors, as the resulting scaffolds can support multiple protonation states, coordination geometries, and H‐bonding interactions.
more »
« less
Anagostic Axial Interactions Inhibit Cross‐Coupling Catalytic Activity in Square Planar Pyridinophane Nickel Complexes
Abstract Herein, we report for the first time the use of the nitrogen‐based bidentate molecule [2.2]pyridinophane (N2) as a ligand for metal complexes. Additionally, its improved synthesis allows for electronic modification of the pyridine rings to access the newpara‐dimethylamino‐[2.2]pyridinophane ligand (p‐NMe2N2). These ligands bind nickel in an analogous fashion to other pyridinophane ligands, completing the series of tetra‐, tri‐, and bidentate pyridinophane‐nickel complexes. The new compounds exhibit geometrically enforced C−H anagostic interactions between the ethylene bridge protons and the nickel center that are not present in other pyridinophane systems. These ethylene bridge groups also act as an unusual form of steric encumbrance, enforcing square planar geometries in ligand fields that would otherwise adopt tetrahedral structures. In addition, these anagostic interactions inhibit the catalytic performance in Csp3–Csp3Kumada cross coupling reactions relative to other common bidentate N‐ligand platforms, possibly by preventing the formation of the 5‐coordinate oxidative addition intermediates.
more »
« less
- Award ID(s):
- 2155160
- PAR ID:
- 10528235
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- ChemCatChem
- Volume:
- 16
- Issue:
- 5
- ISSN:
- 1867-3880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Herein, we report the first systematic study of the oxidative addition of aryl bromides to a PdIcenter to generate organometallic PdIIIcomplexes. These isolable PdIIIcomplexes stabilized by tetradentate macrocyclic pyridinophane ligands exhibit distinct UV–vis and EPR spectroscopic signatures that allowed for the monitoring of their generation in situ. These ligand scaffolds were sterically and electronically tuned using a modular synthetic approach to probe the kinetic properties and activation parameters of the oxidative addition reaction, and a combination of UV–vis and cryo stopped‐flow spectroscopic studies reveal a rapid oxidative addition step occurring at a PdIcenter. In addition, these results are in strong agreement with our recent reactivity studies, which demonstrated that mononuclear PdIsystems are competent catalysts in Kumada cross‐coupling reactions, and thus set the stage for an improved understanding of potential catalytic applications for odd‐electron Pd systems.more » « less
-
Abstract Although metal–organic frameworks are coordination‐driven assemblies, the structural prediction and design using metal‐ligand interactions can be unreliable due to other competing interactions. Leveraging non‐coordination interactions to develop porous assemblies could enable new materials and applications. Here, we use a multi‐module MOF system to explore important and pervasive impact of ligand‐ligand interactions on metal‐ligand as well as ligand‐ligand co‐assembly process. It is found that ligand‐ligand interactions play critical roles on the scope or breakdown of isoreticular chemistry. With cooperative di‐ and tri‐topic ligands, a family of Ni‐MOFs has been synthesized in various structure types including partitioned MIL‐88‐acs (pacs), interruptedpacs(i‐pacs), and UMCM‐1‐muo. A new type of isoreticular chemistry on the muo platform is established between two drastically different chemical systems. The gas sorption and electrocatalytic studies were performed that reveal excellent performance such as high C2H2/CO2selectivity of 21.8 and high C2H2uptake capacity of 114.5 cm3/g at 298 K and 1 bar.more » « less
An official website of the United States government

