skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 20, 2026

Title: Oxidative Addition of Aryl Bromides at Palladium(I) to form Palladium(III) Complexes
Abstract Herein, we report the first systematic study of the oxidative addition of aryl bromides to a PdIcenter to generate organometallic PdIIIcomplexes. These isolable PdIIIcomplexes stabilized by tetradentate macrocyclic pyridinophane ligands exhibit distinct UV–vis and EPR spectroscopic signatures that allowed for the monitoring of their generation in situ. These ligand scaffolds were sterically and electronically tuned using a modular synthetic approach to probe the kinetic properties and activation parameters of the oxidative addition reaction, and a combination of UV–vis and cryo stopped‐flow spectroscopic studies reveal a rapid oxidative addition step occurring at a PdIcenter. In addition, these results are in strong agreement with our recent reactivity studies, which demonstrated that mononuclear PdIsystems are competent catalysts in Kumada cross‐coupling reactions, and thus set the stage for an improved understanding of potential catalytic applications for odd‐electron Pd systems.  more » « less
Award ID(s):
2453341 2102544
PAR ID:
10648237
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
43
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herein we report the direct observation of C–H bond activation at an isolated mononuclear Pd( iii ) center. The oxidation of the Pd( ii ) complex ( Me N4)Pd II (neophyl)Cl (neophyl = –CH 2 C(CH 3 ) 2 Ph; Me N4 = N , N ′-dimethyl-2,11-diaza[3.3](2,6)pyridinophane) using the mild oxidant ferrocenium hexafluorophosphate (FcPF 6 ) yields the stable Pd( iii ) complex [( Me N4)Pd III (neophyl)Cl]PF 6 . Upon the addition of an acetate source, [( Me N4)Pd III (neophyl)Cl]PF 6 undergoes Csp 2 –H bond activation to yield the cyclometalated product [( Me N4)Pd III (cycloneophyl)]PF 6 . This metalacycle can be independently prepared, allowing for a complete characterization of both the starting and final Pd( iii ) complexes. The C–H activation step can be monitored directly by EPR and UV-Vis spectroscopies, and kinetic isotope effect (KIE) studies suggest that either a pre-association step such as an agostic interaction may be rate limiting, or that the C–H activation is partially rate-limiting in conjunction with ligand rearrangement. Density functional theory calculations support that the reaction proceeds through a κ 3 ligand coordination and that the flexible ligand structure is important for this transformation. Overall, this study represents the first example of discrete C–H bond activation occurring at a Pd( iii ) center through a concerted metalation–deprotonation mechanism, akin to that observed for Pd( ii ) and Pd( iv ) centers. 
    more » « less
  2. Abstract Photoredox nickel catalysis has emerged as a powerful strategy for cross-coupling reactions. Although the involvement of paramagnetic Ni(I)/Ni(III) species as active intermediates in the catalytic cycle has been proposed, a thorough spectroscopic investigation of these species is lacking. Herein, we report the tridentate pyridinophane ligandsRN3 that allow for detailed mechanistic studies of the photocatalytic C–O coupling reaction. The derived (RN3)Ni complexes are active catalysts under mild conditions and without an additional photocatalyst. We also provide direct evidence for the key steps involving paramagnetic Ni species in the proposed catalytic cycle: the oxidative addition of an aryl halide to a Ni(I) species, the ligand exchange/transmetalation at a Ni(III) center, and the C–O reductive elimination from a Ni(III) species. Overall, the present work suggests theRN3 ligands are a practical platform for mechanistic studies of Ni-catalyzed reactions and for the development of new catalytic applications. 
    more » « less
  3. Palladium(0) phosphine complexes are of great importance as catalysts in numerous bond formation reactions that involve oxidative addition of substrates. Highly active catalysts with labile ligands are of particular interest but can be challenging to isolate and structurally characterize. We investigate here the synthesis and chemical reactivity of Pd 0 complexes that contain geometrically adaptable diferrocenylmercury-bridged diphosphine chelate ligands (L) in combination with a labile dibenzylideneacetone (dba) ligand. The diastereomeric diphosphines 1a (p S p R , meso -isomer) and 1b (p S p S -isomer) differ in the orientation of the ferrocene moieties relative to the central Ph 2 PC 5 H 3 –Hg–C 5 H 3 PPh 2 bridging entity. The structurally distinct trigonal LPd 0 (dba) complexes 2a ( meso ) and 2b (p S p S ) are obtained upon treatment with Pd(dba) 2 . A competition reaction reveals that 1b reacts faster than 1a with Pd(dba) 2 . Unexpectedly, catalytic interconversion of 1a ( meso ) into 1b ( rac ) is observed at room temperature in the presence of only catalytic amounts of Pd(dba) 2 . Both Pd 0 complexes, 2a and 2b , readily undergo oxidative addition into the C–Cl bond of CH 2 Cl 2 at moderate temperatures with formation of the square-planar trans -chelate complexes LPd II Cl(CH 2 Cl) ( 3a , 3b ). Kinetic studies reveal a significantly higher reaction rate for the meso -isomer 2a in comparison to (p S p S )- 2b . 
    more » « less
  4. Abstract Anionic ancillary ligands play a critical role in the construction of rare earth (RE) metal complexes due to the large influence on the stability of the molecule and engendering emergent electronic properties that are of interest in a plethora of applications. Supporting ligands comprising oxygen donor atoms are highly pursued in RE chemistry owing to the high oxophilicity innate to these ions. The scarcely employed bis(acyl)phosphide (BAP) ligands feature oxygen coordination sites and contain a phosphide backbone rendering it attractive for RE‐coordination chemistry. Here, we integrate bis(mesitoyl)phosphide (mesBAP) as an ancillary ligand into REIIIchemistry to generate the first dinuclear trivalent RE complexes containing BAP ligands; [{mesBAP}2RE(THF)(μ‐Cl)]2(RE=Y, (1), Gd (2), and Dy (3); THF=tetrahydrofuran). Each RE center is ligated to two monoanionicmesBAP ligands, one THF molecule and one chloride ion. All three molecules were characterized through single‐crystal X‐ray diffraction,31P NMR, IR and UV‐Vis spectroscopy.31P,1H and13C NMR on the diamagnetic yttrium congener1confirm asymmetric ligand coordination. DFT calculations conducted on2provided insight into the electronic structure. The magnetic properties of2and3were investigated via SQUID magnetometry. The GdIIIions exhibit weak antiferromagnetic coupling, corroborated by DFT results. 
    more » « less
  5. Abstract Tuning of redox‐active complexes featuring metals with high coordination numbers by incorporation of secondary redox‐inactive cations has received far less attention than it deserves. Here, appending moderate steric bulk to a tripodal ligand framework has been tested for its influence on secondary‐cation‐driven structural and electrochemical tuning of cerium, a lanthanide that tends to adopt high coordination numbers. Aquasi‐C3‐symmetric cerium(III) complex denoted[Ce]has been prepared that features pendant benzyloxy groups, and this work demonstrates that this species offers a site capable of binding single Na+or Ca2+ions. Electrochemical and UV‐visible spectroscopic studies reveal equilibrium binding affinity of[Ce]for Na+in acetonitrile solvent, contrasting with tight binding of all cations in all other previously studied systems of this type. The modulated cation binding can be attributed to the bulky benzyloxy groups, which impact the thermodynamics of cation binding but do not impede the formation of cerium centers with coordination number 8 upon binding of either Na+or Ca2+. The Ce(IV/III) reduction potential was found to be tunable under the equilibrium binding conditions, highlighting the potentially significant role that controlled structural changes can play in modulating the solution properties of heterobimetallic complexes. 
    more » « less