skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: L3 Vehicles are becoming a Reality: Important Human Factors Consideration for the Viability of Conditional Automation

As of early 2023, only a limited number of Society of Automotive Engineers (SAE) Level 3 (L3) automated driving systems are available on the market, and they are primarily offered by luxury vehicle brands. SAE L3 automated driving systems are classified as conditional automation (CA), meaning that the vehicle can undertake some well-defined driving tasks under specific conditions, but the driver must be ready to assume control of the vehicle when prompted by the system. It is anticipated that an increasing number of L3 CA systems will be introduced on public roads in the next few years. However, L3 systems pose unique Human Factors (HF) challenges that require thoughtful consideration to ensure that production systems are feasible without compromising driver or road safety. This panel discussion brings together HF researchers and practitioners with expertise in human behavior and usability design for automotive applications to discuss and delineate key issues specifically related to L3 systems, as well as potential approaches to tackle these issues.

 
more » « less
Award ID(s):
2239642
PAR ID:
10528531
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
67
Issue:
1
ISSN:
1071-1813
Page Range / eLocation ID:
1285 to 1288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-driving vehicles are the latest innovation in improving personal mobility and road safety by removing arguably error-prone humans from driving-related tasks. Such advances can prove especially beneficial for people who are blind or have low vision who cannot legally operate conventional motor vehicles. Missing from the related literature, we argue, are studies that describe strategies for vehicle design for these persons. We present a case study of the participatory design of a prototype for a self-driving vehicle human-machine interface (HMI) for a graduate-level course on inclusive design and accessible technology. We reflect on the process of working alongside a co-designer, a person with a visual disability, to identify user needs, define design ideas, and produce a low-fidelity prototype for the HMI. This paper may benefit researchers interested in using a similar approach for designing accessible autonomous vehicle technology. INTRODUCTION The rise of autonomous vehicles (AVs) may prove to be one of the most significant innovations in personal mobility of the past century. Advances in automated vehicle technology and advanced driver assistance systems (ADAS) specifically, may have a significant impact on road safety and a reduction in vehicle accidents (Brinkley et al., 2017; Dearen, 2018). According to the Department of Transportation (DoT), automated vehicles could help reduce road accidents caused by human error by as much as 94% (SAE International, n.d.). In addition to reducing traffic accidents and saving lives and property, autonomous vehicles may also prove to be of significant value to persons who cannot otherwise operate conventional motor vehicles. AVs may provide the necessary mobility, for instance, to help create new employment opportunities for nearly 40 million Americans with disabilities (Claypool et al., 2017; Guiding Eyes for the Blind, 2019), for instance. Advocates for the visually impaired specifically have expressed how “transformative” this technology can be for those who are blind or have significant low vision (Winter, 2015); persons who cannot otherwise legally operate a motor vehicle. While autonomous vehicles have the potential to break down transportation 
    more » « less
  2. Automotive is becoming more and more sensor-equipped. Collision avoidance, lane departure warning, and self-parking are examples of applications becoming possible with the adoption of more sensors in the automotive industry. Moreover, the driver is now equipped with sensory systems like wearables and mobile phones. This rich sensory environment and the real-time streaming of contextual data from the vehicle make the human factor integral in the loop of computation. By integrating the human’s behavior and reaction into the advanced driver-assistance systems (ADAS), the vehicles become a more context-aware entity. Hence, we propose MAConAuto, a framework that helps design human-in-the-loop automotive systems by providing a common platform to engage the rich sensory systems in wearables and mobile to have context-aware applications. By personalizing the context adaptation in automotive applications, MAConAuto learns the behavior and reactions of the human to adapt to the personalized preference where interventions are continuously tuned using Reinforcement Learning. Our general framework satisfies three main design properties, adaptability, generalizability, and conflict resolution. We show how MAConAuto can be used as a framework to design two applications as human-centric applications, forward collision warning, and vehicle HVAC system with negligible time overhead to the average human response time. 
    more » « less
  3. Abstract

    Machine learning and computational processing have advanced such that automated driving systems (ADSs) are no longer a distant reality. Many automobile manufacturers have developed prototypes; however, there exist numerous decision support issues requiring resolution to ensure mass ADS adoption. In the coming decades, it is likely that production ADSs will only be partially autonomous. Such ADSs operate within predetermined conditions and require driver intervention when they are violated. Since forecasts of their 20‐year market penetration are relatively low, ADSs will likely operate in heterogeneous traffic characterized by vehicles of varying autonomy levels. Under these conditions, effective decision support must consider intangible, subjective, and emotional factors as well as influences of human cognition; otherwise, the ADS risks driver distrust and unsatisfactory performance based on an incomplete understanding of its environment. We survey the literature relevant to these issues, identify open problems, and propose research directions for their resolution.

     
    more » « less
  4. The latest developments in vehicle-to-infrastructure (V2I) and vehicle-to-anything (V2X) technologies enable all the entities in the transportation system to communicate and collaborate to optimize transportation safety, mobility, and equity at the system level. On the other hand, the community of researchers and developers is becoming aware of the critical role of roadway infrastructure in realizing automated driving. In particular, intelligent infrastructure systems, which leverage modern sensors, artificial intelligence, and communication capabilities, can provide critical information and control support to connected and/or automated vehicles to fulfill functions that are infeasible for automated vehicles alone due to technical or cost considerations. However, there is limited research on formulating and standardizing the intelligence levels of road infrastructure to facilitate the development, as the SAE automated driving levels have done for automated vehicles. This article proposes a five-level intelligence definition for intelligent roadway infrastructure, namely, connected and automated highway (CAH). The CAH is a subsystem of the more extensive collaborative automated driving system (CADS), along with the connected automated vehicle (CAV) subsystem. Leveraging the intelligence definition of CAH, the intelligence definition for the CADS is also defined. Examples of how the CAH at different levels operates with the CAV in the CADS are also introduced to demonstrate the dynamic allocation of various automated driving tasks between different entities in the CADS.
     
    more » « less
  5. Abstract

    Vehicle‐to‐Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles by improving coordination and removing the barrier of non‐line‐of‐sight sensing. Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system, which can suffer from loss of information due to the inherent issues of their different components, such as sensors' failures or the poor performance of V2X technologies under dense communication channel load. Particularly, information loss affects the target classification module and, subsequently, the safety application performance. To enable reliable and robust CVS systems that mitigate the effect of information loss, a Context‐Aware Target Classification (CA‐TC) module coupled with a hybrid learning‐based predictive modeling technique for CVS systems is proposed. The CA‐TC consists of two modules: a Context‐Aware Map (CAM), and a Hybrid Gaussian Process (HGP) prediction system. Consequently, the vehicle safety applications use the information from the CA‐TC, making them more robust and reliable. The CAM leverages vehicles' path history, road geometry, tracking, and prediction; and the HGP is utilized to provide accurate vehicles' trajectory predictions to compensate for data loss (due to communication congestion) or sensor measurements' inaccuracies. Based on offline real‐world data, a finite bank of driver models that represent the joint dynamics of the vehicle and the drivers' behavior is learned. Offline training and online model updates are combined with on‐the‐fly forecasting to account for new possible driver behaviors. Finally, the framework is validated using simulation and realistic driving scenarios to confirm its potential in enhancing the robustness and reliability of CVS systems.

     
    more » « less