skip to main content


This content will become publicly available on December 31, 2024

Title: Classification of Roadway Infrastructure and Collaborative Automated Driving System
The latest developments in vehicle-to-infrastructure (V2I) and vehicle-to-anything (V2X) technologies enable all the entities in the transportation system to communicate and collaborate to optimize transportation safety, mobility, and equity at the system level. On the other hand, the community of researchers and developers is becoming aware of the critical role of roadway infrastructure in realizing automated driving. In particular, intelligent infrastructure systems, which leverage modern sensors, artificial intelligence, and communication capabilities, can provide critical information and control support to connected and/or automated vehicles to fulfill functions that are infeasible for automated vehicles alone due to technical or cost considerations. However, there is limited research on formulating and standardizing the intelligence levels of road infrastructure to facilitate the development, as the SAE automated driving levels have done for automated vehicles. This article proposes a five-level intelligence definition for intelligent roadway infrastructure, namely, connected and automated highway (CAH). The CAH is a subsystem of the more extensive collaborative automated driving system (CADS), along with the connected automated vehicle (CAV) subsystem. Leveraging the intelligence definition of CAH, the intelligence definition for the CADS is also defined. Examples of how the CAH at different levels operates with the CAV in the CADS are also introduced to demonstrate the dynamic allocation of various automated driving tasks between different entities in the CADS.
 
more » « less
Award ID(s):
2222541
NSF-PAR ID:
10465948
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
SAE International Journal of Connected and Automated Vehicles
Volume:
6
Issue:
4
ISSN:
2574-0741
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Connected and automated vehicles (CAVs) will undoubtedly transform many aspects of transportation systems in the future. In the meantime, transportation agencies must make investment and policy decisions to address the future needs of the transportation system. This research provides much-needed guidance for agencies about planning-level capacities in a CAV future and quantify Highway Capacity Manual (HCM) capacities as a function of CAV penetration rates and vehicle behaviors such as car-following, lane change, and merge. As a result of numerous uncertainties on CAV implementation policies, the study considers many scenarios including variations in parameters (including CAV gap/headway settings), roadway geometry, and traffic characteristics. More specifically, this study considers basic freeway, freeway merge, and freeway weaving segments in which various simulation scenarios are evaluated using two major CAV applications: cooperative adaptive cruise control and advanced merging. Data from microscopic traffic simulation are collected to develop capacity adjustment factors for CAVs. Results show that the existence of CAVs in the traffic stream can significantly enhance the roadway capacity (by as much as 35% to 40% under certain cases), not only on basic freeways but also on merge and weaving segments, as the CAV market penetration rate increases. The human driver behavior of baseline traffic also affects the capacity benefits, particularly at lower CAV market penetration rates. Finally, tables of capacity adjustment factors and corresponding regression models are developed for HCM implementation of the results of this study. 
    more » « less
  2. Connected autonomous vehicles (CAVs) have fostered the development of intelligent transportation systems that support critical safety information sharing with minimum latency and making driving decisions autonomously. However, the CAV environment is vulnerable to different external and internal attacks. Authorized but malicious entities which provide wrong information impose challenges in preventing internal attacks. An essential requirement for thwarting internal attacks is to identify the trustworthiness of the vehicles. This paper exploits interaction provenance to propose a trust management framework for CAVs that considers both in-vehicle and vehicular network security incidents, supports flexible security policies and ensures privacy. The framework contains an interaction provenance recording and trust management protocol that extracts events from interaction provenance and calculates trustworthiness using fuzzy policies based on the events. Simulation results show that the framework is effective and can be integrated with the CAV stack with minimal computation and communication overhead. 
    more » « less
  3. The operational safety of Automated Driving System (ADS)-Operated Vehicles (AVs) are a rising concern with the deployment of AVs as prototypes being tested and also in commercial deployment. The robustness of safety evaluation systems is essential in determining the operational safety of AVs as they interact with human-driven vehicles. Extending upon earlier works of the Institute of Automated Mobility (IAM) that have explored the Operational Safety Assessment (OSA) metrics and infrastructure-based safety monitoring systems, in this work, we compare the performance of an infrastructure-based Light Detection And Ranging (LIDAR) system to an onboard vehicle-based LIDAR system in testing at the Maricopa County Department of Transportation SMARTDrive testbed in Anthem, Arizona. The sensor modalities are located in infrastructure and onboard the test vehicles, including LIDAR, cameras, a real-time differential GPS, and a drone with a camera. Bespoke localization and tracking algorithms are created for the LIDAR and cameras. In total, there are 26 different scenarios of the test vehicles navigating the testbed intersection; for this work, we are only considering car following scenarios. The LIDAR data collected from the infrastructure-based and onboard vehicle-based sensors system are used to perform object detection and multi-target tracking to estimate the velocity and position information of the test vehicles and use these values to compute OSA metrics. The comparison of the performance of the two systems involves the localization and tracking errors in calculating the position and the velocity of the subject vehicle, with the real-time differential GPS data serving as ground truth for velocity comparison and tracking results from the drone for OSA metrics comparison.

     
    more » « less
  4. null (Ed.)
    For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project. 
    more » « less
  5. Connected Autonomous Vehicles (CAVs) are expected to enable reliable, efficient, and intelligent transportation systems. Most motion planning algorithms for multi-agent systems implicitly assume that all vehicles/agents will execute the expected plan with a small error and evaluate their safety constraints based on this fact. This assumption, however, is hard to keep for CAVs since they may have to change their plan (e.g., to yield to another vehicle) or are forced to stop (e.g., A CAV may break down). While it is desired that a CAV never gets involved in an accident, it may be hit by other vehicles and sometimes, preventing the accident is impossible (e.g., getting hit from behind while waiting behind the red light). Responsibility-Sensitive Safety (RSS) is a set of safety rules that defines the objective of CAV to blame, instead of safety. Thus, instead of developing a CAV algorithm that will avoid any accident, it ensures that the ego vehicle will not be blamed for any accident it is a part of. Original RSS rules, however, are hard to evaluate for merge, intersection, and unstructured road scenarios, plus RSS rules do not prevent deadlock situations among vehicles. In this paper, we propose a new formulation for RSS rules that can be applied to any driving scenario. We integrate the proposed RSS rules with the CAV’s motion planning algorithm to enable cooperative driving of CAVs. We use Control Barrier Functions to enforce safety constraints and compute the energy optimal trajectory for the ego CAV. Finally, to ensure liveness, our approach detects and resolves deadlocks in a decentralized manner. We have conducted different experiments to verify that the ego CAV does not cause an accident no matter when other CAVs slow down or stop. We also showcase our deadlock detection and resolution mechanism using our simulator. Finally, we compare the average velocity and fuel consumption of vehicles when they drive autonomously with the case that they are autonomous and connected. 
    more » « less