skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Looking for the sponge loop: analyses of detritus on a Caribbean forereef using stable isotope and eDNA metabarcoding techniques
Coral reefs are biodiverse ecosystems that rely on trophodynamic transfers from primary producers to consumers through the detrital pathway. The sponge loop hypothesis proposes that sponges consume dissolved organic carbon (DOC) and produce large quantities of detritus on coral reefs, with this turn-over approaching the daily gross primary production of the reef ecosystem. In this study, we collected samples of detritus in the epilithic algal matrix (EAM) and samples from potential sources of detritus over two seasons from the forereef at Carrie Bow Cay, Belize. We chose this location to maximize the likelihood of finding support for the sponge loop hypothesis because Caribbean reefs have higher sponge abundances than other tropical reefs worldwide and the Mesoamerican barrier reef is an archetypal coral reef ecosystem. We used stable isotope analyses and eDNA metabarcoding to determine the composition of the detritus. We determined that the EAM detritus was derived from a variety of benthic and pelagic sources, with primary producers (micro- and macroalgae) as major contributors and metazoans (Arthropoda, Porifera, Cnidaria, Mollusca) as minor contributors. None of the sponge species that reportedly produce detritus were present in EAM detritus. The cnidarian signature in EAM detritus was dominated by octocorals, with a scarcity of hard corals. The composition of detritus also varied seasonally. The negligible contribution of sponges to reef detritus contrasts with the detrital pathway originally proposed in the sponge loop hypothesis. The findings indicate a mix of pelagic and benthic sources in the calmer summer and primarily benthic sources in the more turbulent spring.  more » « less
Award ID(s):
2218863
PAR ID:
10528556
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Hull, M
Publisher / Repository:
Taylor and Francis
Date Published:
Journal Name:
PeerJ
Edition / Version:
1
Volume:
12
Issue:
1
ISSN:
2167-8359
Page Range / eLocation ID:
e16970
Subject(s) / Keyword(s):
Detritus Coral reef Trophodynamics Porifera eDNA Stable isotope analyses
Format(s):
Medium: X Size: 4.8MB Other: pdf
Size(s):
4.8MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sponges are important ecological and functional components of coral reefs. Recently, a new hypothesis about the functional ecology of sponges in organic matter recycling pathways, the sponge‐loop hypothesis, in which dissolved and particulate organic matter is taken up by sponges and shunted to higher trophic levels as detritus, has been proposed and demonstrated for shallow (< 30 m) cryptic species. However, support for this hypothesis at mesophotic depths (∼ 30–150 m) is lacking. Here, we examined detritus production, a prerequisite of the sponge loop pathway, in a reciprocal transplant experiment, usingHalisarca caeruleafrom water depths of 10 and 50 m. Detritus production was significantly lower in mesophotic sponges compared to shallow samples ofH. caerulea. Additionally, detritus production rates in transplanted sponges moved in the direction of rates observed for resident conspecifics. The microbiome of these sponge populations was also significantly different between shallow and mesophotic depths, and the microbial communities of the transplanted sponges also shifted in the direction of their new depth in 10 d largely driven by changes inOxyphotobacteria,Acidimicrobiia,Nitrososphaeria,Nitrospira,Deltaproteobacteria, andDadabacteriia. This occurred in an environment where the availability of both dissolved and particulate trophic resources changed significantly across the shallow to mesophotic depth gradient where these sponge populations were found. These results suggest that changes in sponge detritus production are primarily driven by differential quality and quantity of trophic resources, as well as their utilization by the sponge host, and its microbiome, along the shallow to mesophotic depth gradient. 
    more » « less
  2. With the decline of reef-building corals, other organisms are taking over Caribbean reefs, including sponges and benthic cyanobacterial mats (BCM). Sponges take up dissolved organic matter (DOM), but the sources and chemical characteristics of DOM taken up by sponges are unknown. One likely DOM source is benthic autotrophs, including BCM, which are prolific producers of DOM. We tested the hypothesis that sponges take up BCM-derived DOM using laboratory experiments in which seawater samples were collected before and after sequential incubations of BCM and small individuals of the giant barrel sponge Xestospongia muta. The concentration of DOC and relative abundance of individual features in the high resolution mass spectra using untargeted metabolomics were determined for each sample. There was a significant increase in DOC after BCM incubations, followed by a significant decrease after sponge incubations. These changes were mirrored in single feature relative abundances, with 2101 out of 3667 features significantly enriched during BCM incubations, and 54% of these (1142) depleted during sponge incubations. Among BCM-enriched and sponge-depleted features, many were halogenated, some were known BCM-derived secondary metabolites (e.g., carriebowmide, barbamide), and others matched unidentified sponge-depleted features from seawater samples collected on the reef. To our knowledge, this is the first report that sponges take up BCM exudates, including some that were detectable in reef DOM, revealing a path of molecules from source to sink through their environment. The BCM exudates taken up by sponges may be used as a food source or incorporated into sponge secondary metabolites for holobiont maintenance or chemical defenses. 
    more » « less
  3. Abstract Successional theory proposes that fast growing and well dispersed opportunistic species are the first to occupy available space. However, these pioneering species have relatively short life cycles and are eventually outcompeted by species that tend to be longer-lived and have lower dispersal capabilities. Using Autonomous Reef Monitoring Structures (ARMS) as standardized habitats, we examine the assembly and stages of ecological succession among sponge species with distinctive life history traits and physiologies found on cryptic coral reef habitats of Kāneʻohe Bay, Hawaiʻi. Sponge recruitment was monitored bimonthly over 2 years on ARMS deployed within a natural coral reef habitat resembling the surrounding climax community and on ARMS placed in unestablished mesocosms receiving unfiltered seawater directly from the natural reef deployment site. Fast growing haplosclerid and calcareous sponges initially recruited to and dominated the mesocosm ARMS. In contrast, only slow growing long-lived species initially recruited to the reef ARMS, suggesting that despite available space, the stage of ecological succession in the surrounding habitat influences sponge community development in uninhabited space. Sponge composition and diversity between early summer and winter months within mesocosm ARMS shifted significantly as the initially recruited short-lived calcareous and haplosclerid species initially recruit and then died off. The particulate organic carbon contribution of dead sponge tissue from this high degree of competition-free community turnover suggests a possible new component to the sponge loop hypothesis which remains to be tested among these pioneering species. This source of detritus could be significant in early community development of young coastal habitats but less so on established coral reefs where the community is dominated by long-lived colonial sponges. 
    more » « less
  4. Tropical coral reef ecosystems are changing rapidly to an alternative state in which sponges are the dominant living habitat, with giant barrel sponges (GBSs, Xestospongia spp.) representing the largest biomass. Unlike other benthic reef organisms, GBSs are ecosystem engineers that pump large volumes of seawater, disrupting the benthic boundary layer and directing flow away from the reef surface and into the water column. The morphology and size of GBSs have made them particularly good experimental subjects to study the hydraulics of sponge pumping and the transformation that occurs as seawater is processed by the sponge holobiont (sponge cells and microbial symbionts). This Review is part of a series marking the 100th birthday of The Company of Biologists, which was founded by marine biologist George Parker Bidder III, who primarily worked on sponges. The Review provides an integrative assessment of research on GBSs with comparisons with what is known about other marine sponges. Recent discoveries suggest that ancient lineages of morphologically indistinguishable GBSs are responding to environmental changes over sub-decadal time periods to rapidly populate reefs stripped of coral cover by climate change. If GBSs remain robust to rising seawater temperatures, they will become the greatest source of habitat complexity on reefs of the future, so knowledge of their biology and physiology will be important to our understanding of these ecosystems. 
    more » « less
  5. null (Ed.)
    Competition for limited space is an important driver of benthic community structure on coral reefs. Studies of coral-algae and coral-sponge interactions often show competitive dominance of algae and sponges over corals, but little is known about the outcomes when these groups compete in a multispecies context. Multispecies competition is increasingly common on Caribbean coral reefs as environmental degradation drives loss of reef-building corals and proliferation of alternative organisms such as algae and sponges. New methods are needed to understand multispecies competition, whose outcomes can differ widely from pairwise competition and range from coexistence to exclusion. In this study, we used 3D photogrammetry and image analyses to compare pairwise and multispecies competition on reefs in the US Virgin Islands. Sponges ( Desmapsamma anchorata, Aplysina cauliformis ) and macroalgae ( Lobophora variegata ) were attached to coral ( Porites astreoides ) and arranged to simulate multispecies (coral-sponge-algae) and pairwise (coral-sponge, coral-algae) competition. Photogrammetric 3D models were produced to measure surface area change of coral and sponges, and photographs were analyzed to measure sponge-coral, algae-coral, and algae-sponge overgrowth. Coral lost more surface area and was overgrown more rapidly by the sponge D. anchorata in multispecies treatments, when the sponge was also in contact with algae. Algae contact may confer a competitive advantage to the sponge D. anchorata, but not to A. cauliformis , underscoring the species-specificity of these interactions. This first application of photogrammetry to study competition showed meaningful losses of living coral that, combined with significant overgrowths by competitors detected from image analyses, exposed a novel outcome of multispecies competition. 
    more » « less