skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel chitosan-based barrier materials for environmental containment: Synthesis, characterization, and contaminant removal capacities and mechanisms
This study critically appraises employing chitosan as a composite with bentonite, biochar, or both materials as an alternative to conventional barrier materials. A comprehensive literature review was conducted to identify the studies reporting chitosan-bentonite composite (CBC), chitosan amended biochar (CAB), and chitosan-bentonite-biochar composite (CBBC) for effective removal of various contaminants. The study aims to review the synthesis of these composites, identify fundamental properties affecting their adsorption capacities, and examine how these properties affect or enhance the removal abilities of other materials within the composite. Notably, CBC composites have the advantage of adsorbing both cationic and anionic species, such as heavy metals and dyes, due to the cationic nature of chitosan and the anionic nature of montmorillonite, along with the increased accessible surface area due to the clay. CAB composites have the unique advantage of being low-cost sorbents with high specific surface area, affinity for a wide range of contaminants owing to the high surface area and microporosity of biochar, and abundant available functional groups from the chitosan. Limited studies have reported the utilization of CBBC composites to remove various contaminants. These composites can be prepared by combining the steps employed in preparing CBC and CAB composites. They can benefit from the favorable adsorption properties of all three materials while also satisfying the mechanical requirements of a barrier material. This study serves as a knowledge base for future research to develop novel composite barrier materials by incorporating chitosan and biochar as amendments to bentonite.  more » « less
Award ID(s):
2225303 2225195
PAR ID:
10528623
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Chemosphere
Volume:
359
Issue:
C
ISSN:
0045-6535
Page Range / eLocation ID:
142285
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Containment barrier systems, such as vertical slurry walls and low-permeable liners in waste containment systems, are commonly used to prevent groundwater contamination. However, traditional low-permeable clays used in these barriers have limitations in effectively removing various contaminants, including phosphate, which is a contaminant of global concern. The overarching goal of this work is to create a novel chitosan-bentonite composite barrier for improving the performance of containment systems. Chitosan, a material derived by deacetylating chitin, is a promising barrier material due to its ability to adsorb various contaminants. The purpose of this study is to investigate incorporating chitosan into these barriers to enhance their contaminant adsorption capacity. Previous studies were performed on three chitosans with varying degree of deacetylation (DOD) and molecular weights (MW) and one type of bentonite. The current study presents results from batch tests on four additional chitosan materials and a different source of bentonite. These tests assessed their individual phosphate removal capabilities and were compared with earlier findings. The chitosans exhibited varying phosphate removal efficiencies based on DOD, MW, surface area, and source. The highest removal efficiency ranging from 20.9% to 85.6%, at different initial phosphate concentrations, was achieved by one of the chitosan variants. In contrast, bentonite achieved 15.3% to 41.6% removal at different phosphate concentrations. Results suggest a composite material of chitosan and bentonite in engineered barriers could significantly enhance phosphate removal, especially at lower concentrations (0.5 mg/l), compared to a simple bentonite-based barrier. 
    more » « less
  2. Excessive levels of phosphate in stormwater runoff can negatively impact receiving surface water bodies, such as retention ponds, and may also seep into groundwater. Liner systems composed of materials with greater phosphate selectivity have the potential to mitigate infiltration and eliminate phosphate. One potential material is chitosan, an abundant naturally occurring biopolymer. This study evaluated five materials for their ability to remove phosphate from synthetic stormwater using batch tests with different initial phosphate concentrations ranging from 0.5 to 12 mg/L and a fixed 24-h exposure time. The materials included two types of clayey soils (kaolin and bentonite) and three different varieties of chitosan with varying molecular weights (low, medium, and high). The phosphate removal efficiency of kaolin was found to be the highest, with efficiencies ranging from 100% to 56% at different concentrations, while bentonite was found to be the least effective, with removal efficiencies ranging from 40% to 12%. The removal efficiencies of all three types of chitosans analyzed were higher than those of bentonite but lower than those of kaolin. The removal efficiencies ranged from 77% to 19% for low-molecular-weight chitosan, 84% to 31% for medium-molecular-weight chitosan, and 55% to 18% for high-molecular-weight chitosan. The removal mechanism of phosphate by kaolin and bentonite was attributed to surface adsorption and precipitation. In chitosan, the likely mechanism is electrostatic attraction. The maximum adsorption capacity for kaolin was not reached under the tested phosphate concentration range, indicating potential adsorption sites remained available on the particle surfaces. The results for bentonite, low-molecular-weight chitosan, and high-molecular-weight chitosan showed that these materials nearly reached their maximum adsorption capacities, indicating that fewer adsorption sites were remaining. The Langmuir adsorption isotherm was found to be the best-fit model for phosphate adsorption in all the materials tested compared to the Freundlich isotherm. According to the Langmuir model, the maximum adsorption capacities for kaolin, bentonite, low-molecular-weight chitosan, medium-molecular-weight chitosan, and high-molecular-weight chitosan were found to be 140.85, 33, 48.78, 82.64, and 51.28 mg/kg, respectively. 
    more » « less
  3. Anionic carboxylated cellulose nanofibers (CNF) are effective media to remove cationic contaminants from water. In this study, sustainable cationic CNF-based adsorbents capable of removing anionic contaminants were demonstrated using a simple approach. Specifically, the zero-waste nitro-oxidization process was used to produce carboxylated CNF (NOCNF), which was subsequently converted into a cationic scaffold by crosslinking with aluminum ions. The system, termed Al-CNF, is found to be effective for the removal of fluoride ions from water. Using the Langmuir isotherm model, the fluoride adsorption study indicates that Al-CNF has a maximum adsorption capacity of 43.3 mg/g, which is significantly higher than that of alumina-based adsorbents such as activated alumina (16.3 mg/g). The selectivity of fluoride adsorption in the presence of other anionic species (nitrate or sulfate) by Al-CNF at different pH values was also evaluated. The results indicate that Al-CNF can maintain a relatively high selectivity towards the adsorption of fluoride. Finally, the sequential applicability of using spent Al-CNF after the fluoride adsorption to further remove cationic contaminant such as Basic Red 2 dye was demonstrated. The low cost and relatively high adsorption capacity of Al-CNF make it suitable for practical applications in fluoride removal from water. 
    more » « less
  4. Abstract The escalating presence of per‐ and polyfluoroalkyl substances (PFAS) in drinking water poses urgent public health concerns, necessitating effective removal. This study presents a groundbreaking approach, using viologen to synthesize covalent organic framework nanospheres: MELEM‐COF and MEL‐COF. Characterized by highly crystalline features, these nanospheres exhibit exceptional affinity for diverse anionic PFAS compounds, achieving simultaneous removal of multiple contaminants within 30 min. Investigating six anionic PFAS compounds, MEL‐ and MELEM‐COFs achieved 90.0–99.0% removal efficiency. The integrated analysis unveils the synergistic contributions of COF morphology and functional properties to PFAS adsorption. Notably, MELEM‐COF, with cationic surfaces, exploits electrostatic and dipole interactions, with a 2500 mg g−1adsorption capacity—surpassing all reported COFs to date. MELEM‐COF exhibits rapid exchange kinetics, reaching equilibrium within 30 min. These findings deepen the understanding of COF materials and promise avenues for refining COF‐based adsorption strategies. 
    more » « less
  5. Biochar is frequently made using high-tech, high-control methods which will no doubt better optimize the final material for its intended purpose and increase its value. In contrast, we used low-tech, low-control methods to produce a developing world biochar (DWB) from two common crop wastes, cottonseed (CS) and pecan shell (PS). We created DWB biochar using a top-lit updraft microgasifier (TLUD) made from paint cans, and compared it to a biochar created in a muffle furnace held at 450 °C (MF450). We first used modern material characterization methods (yield, BET, SEM/EDS, TGA, XRD, FTIR) to understand the difference in biochar production methods on the feedstock. We then used batch equilibrium adsorption with cationic and anionic dyes (methyl orange, MO and crystal violet, CV) to examine environmental performance. The TLUD method generally has a lower biochar production yield than MF450 because we believe much of the material in the TLUD achieves temperatures > 450 °C and is sometimes difficult to retain in the device. The higher temperatures in the TLUD device lead to a biochar which is more microporous, has greater surface area, has less surface functional groups, has greater ash content, is more carbonized, and has lower residual cellulose crystallinity. There were differences in adsorption performance whereby the MF450 biochar adsorbs CV more strongly than the TLUD. For MO, PS-TLUD is less effective at adsorbing the dye when compared to PS-MF450, while CS-TLUD has a much higher adsorption strength than CS-MF450. We are not certain why the two methods show opposite effects in different feedstock but speculate that it may have to do with the much higher mineral content in the PS-TLUD compared to its MF450 counterpart. Out of many isotherms examined Freundlich and Langmuir isotherms provide a best-fit to our data only about half the time. Sometimes an S-shaped isotherm was the best fit or still fit the data reasonably well. Comparing the dye adsorption to other studies, the DWB does not adsorb as well, yet it is still effective for removal at environmental dye concentrations of relevance. Overall, we conclude that DWB, made in this uncontrolled fashion, can make a reasonably high quality biochar based on material properties and environmental performance. We suggest that additional research be done on other low-tech biochar production methods to see how to scale-up and optimize them according a developing world community's intended use. 
    more » « less