skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Information Design for Multiple Interdependent Defenders: Work Less, Pay Off More
This paper studies the problem of information design in a general security game setting in which multiple self-interested defenders attempt to provide protection simultaneously for the same set of important targets against an unknown attacker. A principal, who can be one of the defenders, has access to certain private information (i.e., attacker type), whereas other defenders do not. We investigate the question of how that principal, with additional private information, can influence the decisions of the defenders by partially and strategically revealing her information. In particular, we develop a polynomial time ellipsoid algorithm to compute an optimal private signaling scheme. Our key finding is that the separation oracle in the ellipsoid approach can be carefully reduced to bipartite matching. Furthermore, we introduce a compact representation of any ex ante persuasive signaling schemes by exploiting intrinsic security resource allocation structures, enabling us to compute an optimal scheme significantly faster. Our experiment results show that by strategically revealing private information, the principal can significantly enhance the protection effectiveness for the targets.  more » « less
Award ID(s):
2303372
PAR ID:
10528634
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Multidisciplinary Digital Publishing Institute
Date Published:
Journal Name:
Games
Volume:
14
Issue:
1
ISSN:
2073-4336
Page Range / eLocation ID:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Motivated by real-world deployment of drones for conservation, this paper advances the state-of-the-art in security games with signaling. The well-known defender-attacker security games framework can help in planning for such strategic deployments of sensors and human patrollers, and warning signals to ward off adversaries. However, we show that defenders can suffer significant losses when ignoring real-world uncertainties despite carefully planned security game strategies with signaling. In fact, defenders may perform worse than forgoing drones completely in this case. We address this shortcoming by proposing a novel game model that integrates signaling and sensor uncertainty; perhaps surprisingly, we show that defenders can still perform well via a signaling strategy that exploits uncertain real-time information. For example, even in the presence of uncertainty, the defender still has an informational advantage in knowing that she has or has not actually detected the attacker; and she can design a signaling scheme to “mislead” the attacker who is uncertain as to whether he has been detected. We provide theoretical results, a novel algorithm, scale-up techniques, and experimental results from simulation based on our ongoing deployment of a conservation drone system in South Africa. 
    more » « less
  2. We consider information design in spatial resource competition, motivated by ride sharing platforms sharing information with drivers about rider demand. Each of N co-located agents (drivers) decides whether to move to another location with an uncertain and possibly higher resource level (rider demand), where the utility for moving increases in the resource level and decreases in the number of other agents that move. A principal who can observe the resource level wishes to share this information in a way that ensures a welfare-maximizing number of agents move. Analyzing the principal’s information design problem using the Bayesian persuasion framework, we study both private signaling mechanisms, where the principal sends personalized signals to each agent, and public signaling mechanisms, where the principal sends the same information to all agents. We show: 1) For private signaling, computing the optimal mechanism using the standard approach leads to a linear program with 2 N variables, rendering the computation challenging. We instead describe a computationally efficient two-step approach to finding the optimal private signaling mechanism. First, we perform a change of variables to solve a linear program with O(N^2) variables that provides the marginal probabilities of recommending each agent move. Second, we describe an efficient sampling procedure over sets of agents consistent with these optimal marginal probabilities; the optimal private mechanism then asks the sampled set of agents to move and the rest to stay. 2) For public signaling, we first show the welfare-maximizing equilibrium given any common belief has a threshold structure. Using this, we show that the optimal public mechanism with respect to the sender-preferred equilibrium can be computed in polynomial time. 3) We support our analytical results with numerical computations that show the optimal private and public signaling mechanisms achieve substantially higher social welfare when compared with no-information and full-information benchmarks. 
    more » « less
  3. Although security games have attracted intensive research attention over the past years, few existing works consider how information from local communities would affect the game. In this paper, we introduce a new player -- a strategic informant, who can observe and report upcoming attacks -- to the defender-attacker security game setting. Characterized by a private type, the informant has his utility structure that leads to his strategic behaviors. We model the game as a 3-player extensive-form game and propose a novel solution concept of Strong Stackelberg-perfect Bayesian equilibrium. To compute the optimal defender strategy, we first show that although the informant can have infinitely many types in general, the optimal defense plan can only include a finite (exponential) number of different patrol strategies. We then prove that there exists a defense plan with only a linear number of patrol strategies that achieve the optimal defender's utility, which significantly reduces the computational burden and allows us to solve the game in polynomial time using linear programming. Finally, we conduct extensive experiments to show the effect of the strategic informant and demonstrate the effectiveness of our algorithm. 
    more » « less
  4. We introduce password strength signaling as a potential defense against password cracking. Recent breaches have exposed billions of user passwords to the dangerous threat of offline password cracking attacks. An offline attacker can quickly check millions (or sometimes billions/trillions) of password guesses by comparing a candidate password’s hash value with a stolen hash from a breached authentication server. The attacker is limited only by the resources he is willing to invest. We explore the feasibility of applying ideas from Bayesian Persuasion to password authentication. Our key idea is to have the authentication server store a (noisy) signal about the strength of each user password for an offline attacker to find. Surprisingly, we show that the noise distribution for the signal can often be tuned so that a rational (profit-maximizing) attacker will crack fewer passwords. The signaling scheme exploits the fact that password cracking is not a zero-sum game i.e., it is possible for an attacker to increase their profit in a way that also reduces the number of cracked passwords. Thus, a well-defined signaling strategy will encourage the attacker to reduce his guessing costs by cracking fewer passwords. We use an evolutionary algorithm to compute the optimal signaling scheme for the defender. We evaluate our mechanism on several password datasets and show that it can reduce the total number of cracked passwords by up to 12% (resp. 5%) of all users in defending against offline (resp. online) attacks. While the results of our empirical analysis are positive we stress that we view the current solution as a proof-of-concept as there are important societal concerns that would need to be considered before adopting our password strength signaling solution. 
    more » « less
  5. Deception is a fundamental issue across a diverse array of settings, from cybersecurity, where decoys (e.g., honeypots) are an important tool, to politics that can feature politically motivated “leaks” and fake news about candidates. Typical considerations of deception view it as providing false information. However, just as important but less frequently studied is a more tacit form where information is strategically hidden or leaked. We consider the problem of how much an adversary can affect a principal's decision by “half-truths”, that is, by masking or hiding bits of information, when the principal is oblivious to the presence of the adversary. The principal's problem can be modeled as one of predicting future states of variables in a dynamic Bayes network, and we show that, while theoretically the principal's decisions can be made arbitrarily bad, the optimal attack is NP-hard to approximate, even under strong assumptions favoring the attacker. However, we also describe an important special case where the dependency of future states on past states is additive, in which we can efficiently compute an approximately optimal attack. Moreover, in networks with a linear transition function we can solve the problem optimally in polynomial time. 
    more » « less