skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 24, 2025

Title: An Outflow-driven Water Maser Associated with Positive Black Hole Feedback in the Dwarf Galaxy Henize 2–10
Abstract Henize 2–10 is a dwarf galaxy experiencing positive black hole (BH) feedback from a radio-detected low-luminosity active galactic nucleus. Previous Green Bank Telescope (GBT) observations detected a H2O “kilomaser” in Henize 2–10, but the low angular resolution (33″) left the location and origin of the maser ambiguous. We present new Karl G. Jansky Very Large Array observations of the H2O maser line at 22.23508 GHz in Henize 2–10 with ∼2″ resolution. These observations reveal two maser sources distinct in position and velocity. The first maser source is spatially coincident with the known BH outflow and the region of triggered star formation ∼70 pc to the east. Combined with the broad width of the maser (W50∼ 66 km s−1), this confirms our hypothesis that part of the maser detected with the GBT is produced by the impact of the BH outflow shocking the dense molecular gas along the flow and at the interface of the eastern star-forming region. The second maser source lies to the southeast, far from the central BH, and has a narrow width (W50∼ 8 km s−1), suggesting a star formation–related origin. This work has revealed the nature of the H2O kilomaser in Henize 2–10 and illustrates the first known connection between outflow-driven H2O masers and positive BH feedback.  more » « less
Award ID(s):
2235277
PAR ID:
10528669
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
969
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Henize 2–10 is a dwarf starburst galaxy hosting a ∼106Mblack hole (BH) that is driving an ionized outflow and triggering star formation within the central ∼100 pc of the galaxy. Here, we present Atacama Large Millimeter/submillimeter Array continuum observations from 99 to 340 GHz, as well as spectral line observations of the molecules CO (1–0, 3–2), HCN (1–0, 3–2), and HCO+ (1–0, 3–2), with a focus on the BH and its vicinity. Incorporating centimeter-wave radio measurements from the literature, we show that the spectral energy distribution of the BH is dominated by synchrotron emission from 1.4 to 340 GHz, with a spectral index ofα≈ − 0.5. We analyze the spectral line data and identify an elongated molecular gas structure around the BH with a velocity distinct from the surrounding regions. The physical extent of this molecular gas structure is ≈130 pc × 30 pc and the molecular gas mass is ∼106M. Despite an abundance of molecular gas in this general region, the position of the BH is significantly offset from the peak intensity, which may explain why the BH is radiating at a very low Eddington ratio. Our analysis of the spatially resolved line ratio between COJ= 3–2 andJ= 1–0 implies that the CO gas in the vicinity of the BH is highly excited, particularly at the interface between the BH outflow and the regions of triggered star formation. This suggests that the cold molecular gas is being shocked by the bipolar outflow from the BH, supporting the case for positive BH feedback. 
    more » « less
  2. Abstract The launch of JWST opens a new window for studying the connection between metal-line absorbers and galaxies at the end of the Epoch of Reionization. Previous studies have detected absorber–galaxy pairs in limited quantities through ground-based observations. To enhance our understanding of the relationship between absorbers and their host galaxies atz> 5, we utilized the NIRCam wide-field slitless spectroscopy to search for absorber-associated galaxies by detecting their rest-frame optical emission lines (e.g., [OIII] + Hβ). We report the discovery of a Mgii-associated galaxy atz= 5.428 using data from the JWST ASPIRE program. The Mgiiabsorber is detected on the spectrum of quasar J0305–3150 with a rest-frame equivalent width of 0.74 Å. The associated galaxy has an [OIII] luminosity of 1042.5erg s−1with an impact parameter of 24.9 pkpc. The joint Hubble Space Telescope–JWST spectral energy distribution (SED) implies a stellar mass and star formation rate ofM*≈ 108.8M, star-formation rate  ≈ 10Myr−1. Its [OIII] equivalent width and stellar mass are typical of [OIII] emitters at this redshift. Furthermore, connecting the outflow starting time to the SED-derived stellar age, the outflow velocity of this galaxy is ∼300 km s−1, consistent with theoretical expectations. We identified six additional [OIII] emitters with impact parameters of up to ∼300 pkpc at similar redshifts (∣dv∣ < 1000 km s−1). The observed number is consistent with that in cosmological simulations. This pilot study suggests that systematically investigating the absorber–galaxy connection within the ASPIRE program will provide insights into the metal-enrichment history in the early Universe. 
    more » « less
  3. We present JWST/NIRSpec integral field data of the quasar PJ308-21 atz = 6.2342. As shown by previous ALMA and HST imaging, the quasar has two companion sources, interacting with the quasar host galaxy. The high-resolution G395H/290LP NIRSpec spectrum covers the 2.87 − 5.27 μm wavelength range and shows the rest-frame optical emission of the quasar with exquisite quality (signal-to-noise ratio ∼100 − 400 per spectral element). Based on the Hβline from the broad line region, we obtain an estimate of the black hole massMBH, Hβ ∼ 2.7 × 109 M. This value is within a factor ≲1.5 of the Hα-based black hole mass from the same spectrum (MBH, Hα ∼ 1.93 × 109 M) and is consistent with a previous estimate relying on the Mg IIλ2799 line (MBH, MgII ∼ 2.65 × 109 M). All theseMBHestimates are within the ∼0.5 dex intrinsic scatter of the adopted mass calibrations. The high Eddington ratio of PJ308-21λEdd, Hβ ∼ 0.67 (λEdd, Hα ∼ 0.96) is in line with the overall quasar population atz ≳ 6. The relative strengths of the [O III], Fe II, and Hβlines are consistent with the empirical “Eigenvector 1” correlations as observed for low redshift quasars. We find evidence for blueshifted [O III]λ5007 emission with a velocity offset Δv[O III] = −1922 ± 39 km s−1from the systemic velocity and a full width at half maximum (FWHM)FWHM([O III]) = 2776−74+75km s−1. This may be the signature of outflowing gas from the nuclear region, despite the true values of Δv[O III]andFWHM([O III]) likely being more uncertain due to the blending with Hβand Fe IIlines. Our study demonstrates the unique capabilities of NIRSpec in capturing quasar spectra at cosmic dawn and studying their properties in unprecedented detail. 
    more » « less
  4. Abstract A compact source, G0.02467–0.0727, was detected in Atacama Large Millimeter/submillimeter Array 3 mm observations in continuum and very broad line emission. The continuum emission has a spectral indexα≈ 3.3, suggesting that the emission is from dust. The line emission is detected in several transitions of CS, SO, and SO2and exhibits a line width FWHM ≈ 160 km s−1. The line profile appears Gaussian. The emission is weakly spatially resolved, coming from an area on the sky ≲1″ in diameter (≲104au at the distance of the Galactic center, GC). The centroid velocity isvLSR≈ 40–50 km s−1, which is consistent with a location in the GC. With multiple SO lines detected, and assuming local thermodynamic equilibrium (LTE) conditions, the gas temperature isTLTE= 13 K, which is colder than seen in typical GC clouds, though we cannot rule out low-density, subthermally excited, warmer gas. Despite the high velocity dispersion, no emission is observed from SiO, suggesting that there are no strong (≳10 km s−1) shocks in the molecular gas. There are no detections at other wavelengths, including X-ray, infrared, and radio. We consider several explanations for the millimeter ultra-broad-line object (MUBLO), including protostellar outflow, explosive outflow, a collapsing cloud, an evolved star, a stellar merger, a high-velocity compact cloud, an intermediate-mass black hole, and a background galaxy. Most of these conceptual models are either inconsistent with the data or do not fully explain them. The MUBLO is, at present, an observationally unique object. 
    more » « less
  5. Abstract The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst–AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9–7.6μm region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Feii]λ5.34μm and [Arii]λ6.99μm lines are bright on the nucleus and in the starburst ring, as opposed to H2S(5)λ6.91μm, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mgv] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2and [Feii] ∼ 180 pc from the AGN that also show highL(H2)/L(PAH) andL([Feii])/L(Pfα) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into the dense interstellar medium between the nucleus and the starburst ring. These resolved mid-infrared observations of the nuclear gas dynamics demonstrate the power of JWST and its high-sensitivity integral-field spectroscopic capability to resolve feedback processes around supermassive black holes in the dusty cores of nearby luminous infrared galaxies. 
    more » « less