skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Collision-Induced C60 Rovibrational Relaxation Probed by State-Resolved Nonlinear Spectroscopy
Quantum state-resolved spectroscopy was recently achieved for C60 molecules when cooled by buffer gas collisions and probed with a midinfrared frequency comb. This rovibrational quantum state resolution for the largest molecule on record is facilitated by the remarkable symmetry and rigidity of C60, which also present new opportunities and challenges to explore energy transfer between quantum states in this many-atom system. Here we combine state-specific optical pumping, buffer gas collisions, and ultrasensitive intracavity nonlinear spectroscopy to initiate and probe the rotation-vibration energy transfer and relaxation. This approach provides the first detailed characterization of C60 collisional energy transfer for a variety of collision partners, and determines the rotational and vibrational inelastic collision cross sections. These results compare well with our theoretical modeling of the collisions, and establish a route towards quantum state control of a new class of unprecedentedly large molecules.  more » « less
Award ID(s):
1908634
PAR ID:
10545563
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
PRX quantum
Volume:
3
ISSN:
2691-3399
Page Range / eLocation ID:
030332
Format(s):
Medium: X Size: 8.5MB
Size(s):
8.5MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There exist multiple ways to cool neutral molecules. A front runner is the technique of buffer gas cooling, where momentum-changing collisions with abundant cold noble-gas atoms cool the molecules. This approach can, in principle, produce the most diverse samples of cold molecules. We present quantum mechanical and semiclassical calculations of the elastic scattering differential cross sections and rate coefficients of the C60fullerene with He and Ar noble-gas atoms in order to quantify the effectiveness of buffer gas cooling for this molecule. We also develop new three-dimensional potential energy surfaces for this purpose using dispersion-corrected density functional theory (DFT) with counterpoise correction. The icosahedral anisotropy of the molecular system is reproduced by expanding the potential in terms of symmetry-allowed spherical harmonics. Long-range dispersion coefficients have been computed from frequency dependent polarizabilities of C60and the noble-gas atoms. We find that the potential of the fullerene with He is about five times shallower than that with Ar. Anisotropic corrections are very weak for both systems and omitted in the quantum scattering calculations giving us a nearly quantitative estimate of elastic scattering observables. Finally, we have computed differential cross sections at the collision energies used in experiments by Han et al. (Chem Phys Lett 235:211, 1995), corrected for the sensitivity of their apparatus, and we find satisfactory agreement for C60scattering with Ar. 
    more » « less
  2. Femtochemistry techniques have been instrumental in accessing the short time scales necessary to probe transient intermediates in chemical reactions. In this study, we took the contrasting approach of prolonging the lifetime of an intermediate by preparing reactant molecules in their lowest rovibronic quantum state at ultralow temperatures, thereby markedly reducing the number of exit channels accessible upon their mutual collision. Using ionization spectroscopy and velocity-map imaging of a trapped gas of potassium-rubidium (KRb) molecules at a temperature of 500 nanokelvin, we directly observed reactants, intermediates, and products of the reaction40K87Rb +40K87Rb → K2Rb2* → K2+ Rb2. Beyond observation of a long-lived, energy-rich intermediate complex, this technique opens the door to further studies of quantum-state–resolved reaction dynamics in the ultracold regime. 
    more » « less
  3. The unique physical properties of buckminsterfullerene, C60, have attracted intense research activity since its original discovery. Total quantum state–resolved spectroscopy of isolated C60molecules has been of particularly long-standing interest. Such observations have, to date, been unsuccessful owing to the difficulty in preparing cold, gas-phase C60in sufficiently high densities. Here we report high-resolution infrared absorption spectroscopy of C60in the 8.5-micron spectral region (1180 to 1190 wave number). A combination of cryogenic buffer-gas cooling and cavity-enhanced direct frequency comb spectroscopy has enabled the observation of quantum state–resolved rovibrational transitions. Characteristic nuclear spin statistical intensity patterns confirm the indistinguishability of the 60 carbon-12 atoms, while rovibrational fine structure encodes further details of the molecule’s rare icosahedral symmetry. 
    more » « less
  4. We have improved a polarized electron source in which unpolarized electrons undergo collisions with a mixture of buffer gas molecules and optically spin-polarized Rb atoms. With a nitrogen buffer gas, the source reliably provides spin polarization between 15% and 25% with beam currents >4 μA. Vacuum pump upgrades mitigate problems caused by denatured diffusion pump oil, leading to longer run times. A new differential pumping scheme allows the use of higher buffer gas pressures up to 800 mTorr. With a new optics layout, the Rb polarization is continuously monitored by a probe laser and improved pump laser power provides more constant high polarization. We have implemented an einzel lens to better control the energy of the electrons delivered to the target chamber and to preferentially select electron populations of higher polarization. The source is designed for studies of biologically relevant chiral molecule samples, which can poison photoemission-based GaAs polarized electron sources at very low partial pressures. It operates adjacent to a target chamber that rises to pressures as high as 10−4 Torr and has been implemented in a first experiment with chiral cysteine targets. 
    more » « less
  5. State-to-state rotational energy transfer in collisions of ground ro-vibrational state 13 CO molecules with N 2 molecules has been studied using the crossed molecular beam method under kinematically equivalent conditions used for 13 CO + CO rotationally inelastic scattering described in a previously published report (Sun et al. , Science , 2020, 369 , 307–309). The collisionally excited 13 CO molecule products are detected by the same (1 + 1′ + 1′′) VUV (Vacuum Ultra-Violet) resonance enhanced multiphoton ionization scheme coupled with velocity map ion imaging. We present differential cross sections and scattering angle resolved rotational angular momentum alignment moments extracted from experimentally measured 13 CO + N 2 scattering images and compare them with theoretical predictions from quasi-classical trajectories (QCT) on a newly calculated 13 CO–N 2 potential energy surface (PES). Good agreement between experiment and theory is found, which confirms the accuracy of the 13 CO–N 2 potential energy surface for the 1460 cm −1 collision energy studied by experiment. Experimental results for 13 CO + N 2 are compared with those for 13 CO + CO collisions. The angle-resolved product rotational angular momentum alignment moments for the two scattering systems are very similar, which indicates that the collision induced alignment dynamics observed for both systems are dominated by a hard-shell nature. However, compared to the 13 CO + CO measurements, the primary rainbow maximum in the DCSs for 13 CO + N 2 is peaked consistently at more backward scattering angles and the secondary maximum becomes much less obvious, implying that the 13 CO–N 2 PES is less anisotropic. In addition, a forward scattering component with high rotational excitation seen for 13 CO + CO does not appear for 13 CO–N 2 in the experiment and is not predicted by QCT theory. Some of these differences in collision dynamics behaviour can be predicted by a comparison between the properties of the PESs for the two systems. More specific behaviour is also predicted from analysis of the dependence on the relative collision geometry of 13 CO + N 2 trajectories compared to 13 CO + CO trajectories, which shows the special ‘do-si-do’ pathway invoked for 13 CO + CO is not effective for 13 CO + N 2 collisions. 
    more » « less