skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Giant elastocaloric effect at low temperatures in TmVO 4 and implications for cryogenic cooling
Adiabatic decompression of paraquadrupolar materials has significant potential as a cryogenic cooling technology. We focus on TmVO 4 , an archetypal material that undergoes a continuous phase transition to a ferroquadrupole-ordered state at 2.15 K. Above the phase transition, each Tm ion contributes an entropy of k B ln 2 due to the degeneracy of the crystal electric field groundstate. Owing to the large magnetoelastic coupling, which is a prerequisite for a material to undergo a phase transition via the cooperative Jahn–Teller effect, this level splitting, and hence the entropy, can be readily tuned by externally induced strain. Using a dynamic technique in which the strain is rapidly oscillated, we measure the adiabatic elastocaloric response of single-crystal TmVO 4 , and thus experimentally obtain the entropy landscape as a function of strain and temperature. The measurement confirms the suitability of this class of materials for cryogenic cooling applications and provides insight into the dynamic quadrupole strain susceptibility.  more » « less
Award ID(s):
2232515
PAR ID:
10528835
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
25
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We combine synchrotron-based infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and first-principles calculations to explore the properties of hafnia under compression. We find that pressure drives HfO 2 :7%Y from the mixed monoclinic ( P 2 1 / c ) + antipolar orthorhombic ( Pbca ) phase to pure antipolar orthorhombic ( Pbca ) phase at approximately 6.3 GPa. This transformation is irreversible, meaning that upon release, the material is kinetically trapped in the Pbca metastable state at 300 K. Compression also drives polar orthorhombic ( P c a 2 1 ) hafnia into the tetragonal ( P 4 2 / n m c ) phase, although the latter is not metastable upon release. These results are unified by an analysis of the energy landscape. The fact that pressure allows us to stabilize targeted metastable structures with less Y stabilizer is important to preserving the flat phonon band physics of pure HfO 2
    more » « less
  2. MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti 3 C 2 T x MXene monoflakes have exceptional thermal stability at temperatures up to 600 ° C in air, while multiflakes readily oxidize in air at 300 ° C. Density functional theory calculations indicate that confined water between Ti 3 C 2 T x flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti 3 C 2 T x films at 600 ° C, resulting in substantial stability improvement in multiflake films (can withstand 600 ° C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti 3 C 2 T x oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability. 
    more » « less
  3. Abstract We study the effect of strain on the magnetic properties and magnetization configurations in nanogranular FexGe 1 x films ( x = 0.53 ± 0.05 ) with and without B20 FeGe nanocrystals surrounded by an amorphous structure. Relaxed films on amorphous silicon nitride membranes reveal a disordered skyrmion phase while films near and on top of a rigid substrate favor ferromagnetism and an anisotropic hybridization of Fedlevels and spin-polarized Gespband states. The weakly coupled topological states emerge at room temperature and become more abundant at cryogenic temperatures without showing indications of pinning at defects or confinement to individual grains. These results demonstrate the possibility to control magnetic exchange and topological magnetism by strain and inform magnetoelasticity-mediated voltage control of topological phases in amorphous quantum materials. 
    more » « less
  4. Interfaces of glassy materials such as thin films, blends, and composites create strong unidirectional gradients to the local heterogeneous dynamics that can be used to elucidate the length scales and mechanisms associated with the dynamic heterogeneity of glasses. We focus on bilayer films of two different polymers with very different glass transition temperatures ( T g ) where previous work has demonstrated a long-range (∼200 nm) profile in local T g ( z ) is established between immiscible glassy and rubbery polymer domains when the polymer–polymer interface is formed to equilibrium. Here, we demonstrate that an equally long-ranged gradient in local modulus G ~ ( z ) is established when the polymer–polymer interface ( 5 nm) is formed between domains of glassy polystyrene (PS) and rubbery poly(butadiene) (PB), consistent with previous reports of a broad T g ( z ) profile in this system. A continuum physics model for the shear wave propagation caused by a quartz crystal microbalance across a PB/PS bilayer film is used to measure the viscoelastic properties of the bilayer during the evolution of the PB/PS interface showing the development of a broad gradient in local modulus G ~ ( z ) spanning 180 nm between the glassy and rubbery domains of PS and PB. We suggest these broad profiles in T g ( z ) and G ~ ( z ) arise from a coupling of the spectrum of vibrational modes across the polymer–polymer interface as a result of acoustic impedance matching of sound waves with λ 5 nm during interface broadening that can then trigger density fluctuations in the neighboring domain. 
    more » « less
  5. While hydrogen-rich materials have been demonstrated to exhibit high Tcsuperconductivity at high pressures, there is an ongoing search for ternary, quaternary, and more chemically complex hydrides that achieve such high critical temperatures at much lower pressures. First-principles searches are impeded by the computational complexity of solving the Eliashberg equations for large, complex crystal structures. Here, we adopt a simplified approach using electronic indicators previously established to be correlated with superconductivity in hydrides. This is used to study complex hydride structures, which are predicted to exhibit promisingly high critical temperatures for superconductivity. In particular, we propose three classes of hydrides inspired by the Fm 3 ¯ m RH 3 structures that exhibit strong hydrogen network connectivity, as defined through the electron localization function. The first class [RH 11 X 3 Y] is based on a Pm 3 ¯ m structure showing moderately high Tc, where the Tcestimate from electronic properties is compared with direct Eliashberg calculations and found to be surprisingly accurate. The second class of structures [(RH 11 ) 2 X 6 YZ] improves on this with promisingly high density of states with dominant hydrogen character at the Fermi energy, typically enhancing Tc. The third class [(R 1 H 11 )(R 2 H 11 )X 6 YZ] improves the strong hydrogen network connectivity by introducing anisotropy in the hydrogen network through a specific doping pattern. These design principles and associated model structures provide flexibility to optimize both Tcand the structural stability of complex hydrides. 
    more » « less