Over the past decades, there has been an increase of attention to adapting machine learning methods to fully exploit the higher order structure of tensorial data. One problem of great interest is tensor classification, and in particular the extension of linear discriminant analysis to the multilinear setting. We propose a novel method for multilinear discriminant analysis that is radically different from the ones considered so far, and it is the first extension to tensors of quadratic discriminant analysis. Our proposed approach uses invariant theory to extend the nearest Mahalanobis distance classifier to the higher-order setting, and to formulate a well-behaved optimization problem. We extensively test our method on a variety of synthetic data, outperforming previously proposed MDA techniques. We also show how to leverage multi-lead ECG data by constructing tensors via taut string, and use our method to classify healthy signals versus unhealthy ones; our method outperforms state-of-the-art MDA methods, especially after adding significant levels of noise to the signals. Our approach reached an AUC of 0.95(0.03) on clean signals—where the second best method reached 0.91(0.03)—and an AUC of 0.89(0.03) after adding noise to the signals (with a signal-to-noise-ratio of −30)—where the second best method reached 0.85(0.05). Our approach is fundamentally different than previous work in this direction, and proves to be faster, more stable, and more accurate on the tests we performed.
- Award ID(s):
- 2007367
- NSF-PAR ID:
- 10529075
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-6283-9
- Page Range / eLocation ID:
- 183 to 189
- Format(s):
- Medium: X
- Location:
- Nassau, Bahamas
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Representing videos as linear subspaces on Grassmann manifolds has made great strides in action recognition problems. Recent studies have explored the convenience of discriminant analysis by making use of Grassmann kernels. However, traditional methods rely on the matrix representation of videos based on the temporal dimension and suffer from not considering the two spatial dimensions. To overcome this problem, we keep the natural form of videos by representing video inputs as multidimensional arrays known as tensors and propose a tensor discriminant analysis approach on Grassmannian manifolds. Because matrix algebra does not handle tensor data, we introduce a new Grassmann projection kernel based on the tensor-tensor decomposition and product. Experiments with human action databases show that the proposed method performs well compared with the state-of-the-art algorithms.more » « less
-
Byrka, Jaroslaw ; Meka, Raghu (Ed.)In this work, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over F₂. We show the following results for multilinear forms and tensors. Correlation bounds. We show that a random d-linear form has exponentially low correlation with low-degree polynomials. More precisely, for d = 2^{o(k)}, we show that a random d-linear form f(X₁,X₂, … , X_d) : (F₂^{k}) ^d → F₂ has correlation 2^{-k(1-o(1))} with any polynomial of degree at most d/2 with high probability. This result is proved by giving near-optimal bounds on the bias of a random d-linear form, which is in turn proved by giving near-optimal bounds on the probability that a sum of t random d-dimensional rank-1 tensors is identically zero. Tensor rank vs Bias. We show that if a 3-dimensional tensor has small rank then its bias, when viewed as a 3-linear form, is large. More precisely, given any 3-dimensional tensor T: [k]³ → F₂ of rank at most t, the bias of the 3-linear form f_T(X₁, X₂, X₃) : = ∑_{(i₁, i₂, i₃) ∈ [k]³} T(i₁, i₂, i₃)⋅ X_{1,i₁}⋅ X_{2,i₂}⋅ X_{3,i₃} is at least (3/4)^t. This bias vs tensor-rank connection suggests a natural approach to proving nontrivial tensor-rank lower bounds. In particular, we use this approach to give a new proof that the finite field multiplication tensor has tensor rank at least 3.52 k, which is the best known rank lower bound for any explicit tensor in three dimensions over F₂. Moreover, this relation between bias and tensor rank holds for d-dimensional tensors for any fixed d.more » « less
-
null (Ed.)
Recommender systems often involve multi-aspect factors. For example, when shopping for shoes online, consumers usually look through their images, ratings, and product's reviews before making their decisions. To learn multi-aspect factors, many context-aware models have been developed based on tensor factorizations. However, existing models assume multilinear structures in the tensor data, thus failing to capture nonlinear feature interactions. To fill this gap, we propose a novel nonlinear tensor machine, which combines deep neural networks and tensor algebra to capture nonlinear interactions among multi-aspect factors. We further consider adversarial learning to assist the training of our model. Extensive experiments demonstrate the effectiveness of the proposed model.
-
We consider the problem of decomposing a higher-order tensor with binary entries. Such data problems arise frequently in applications such as neuroimaging, recommendation system, topic modeling, and sensor network localization. We propose a multilinear Bernoulli model, develop a rank-constrained likelihood-based estimation method, and obtain the theoretical accuracy guarantees. In contrast to continuous-valued problems, the binary tensor problem exhibits an interesting phase transition phenomenon according to the signal-to-noise ratio. The error bound for the parameter tensor estimation is established, and we show that the obtained rate is minimax optimal under the considered model. Furthermore, we develop an alternating optimization algorithm with convergence guarantees. The efficacy of our approach is demonstrated through both simulations and analyses of multiple data sets on the tasks of tensor completion and clustering.more » « less