skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RETHINKING THE BENEFITS OF STEERABLE FEATURES IN 3D EQUIVARIANT GRAPH NEURAL NETWORKS
Theoretical and empirical comparisons have been made to assess the expressive power and performance of invariant and equivariant GNNs. However, there is currently no theoretical result comparing the expressive power of k-hop invariant GNNs and equivariant GNNs. Additionally, little is understood about whether the performance of equivariant GNNs, employing steerable features up to type-L, increases as L grows – especially when the feature dimension is held constant. In this study, we introduce a key lemma that allows us to analyze steerable features by examining their corresponding invariant features. The lemma facilitates us in understanding the limitations of k-hop invariant GNNs, which fail to capture the global geometric structure due to the loss of geometric information between local structures. Furthermore, we analyze the ability of steerable features to carry information by studying their corresponding invariant features. In particular, we establish that when the input spatial embedding has full rank, the informationcarrying ability of steerable features is characterized by their dimension and remains independent of the feature types. This suggests that when the feature dimension is constant, increasing L does not lead to essentially improved performance in equivariant GNNs employing steerable features up to type-L. We substantiate our theoretical insights with numerical evidence.  more » « less
Award ID(s):
1952339
PAR ID:
10529101
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
International Conference on Learning Representations
Date Published:
Format(s):
Medium: X
Location:
https://openreview.net/pdf?id=mGHJAyR8w0
Sponsoring Org:
National Science Foundation
More Like this
  1. Theoretical and empirical comparisons have been made to assess the expressive power and performance of invariant and equivariant GNNs. However, there is currently no theoretical result comparing the expressive power of k-hop invariant GNNs and equivariant GNNs. Additionally, little is understood about whether the performance of equivariant GNNs, employing steerable features up to type-L, increases as L grows – especially when the feature dimension is held constant. In this study, we introduce a key lemma that allows us to analyze steerable features by examining their corresponding invariant features. The lemma facilitates us in understanding the limitations of k-hop invariant GNNs, which fail to capture the global geometric structure due to the loss of geometric information between local structures. Furthermore, we analyze the ability of steerable features to carry information by studying their corresponding invariant features. In particular, we establish that when the input spatial embedding has full rank, the information carrying ability of steerable features is characterized by their dimension and remains independent of the feature types. This suggests that when the feature dimension is constant, increasing L does not lead to essentially improved performance in equivariant GNNs employing steerable features up to type-L. We substantiate our theoretical insights with numerical evidence. 
    more » « less
  2. Set representation has become ubiquitous in deep learning for modeling the inductive bias of neural networks that are insensitive to the input order. DeepSets is the most widely used neural network architecture for set representation. It involves embedding each set element into a latent space with dimension L, followed by a sum pooling to obtain a whole-set embedding, and finally mapping the whole-set embedding to the output. In this work, we investigate the impact of the dimension L on the expressive power of DeepSets. Previous analyses either oversimplified high-dimensional features to be one-dimensional features or were limited to analytic activations, thereby diverging from practical use or resulting in L that grows exponentially with the set size N and feature dimension D. To investigate the minimal value of L that achieves sufficient expressive power, we present two set-element embedding layers: (a) linear + power activation (LP) and (b) linear + exponential activations (LE). We demonstrate that L being poly(N,D) is sufficient for set representation using both embedding layers. We also provide a lower bound of L for the LP embedding layer. Furthermore, we extend our results to permutation-equivariant set functions and the complex field. 
    more » « less
  3. Identifying informative low-dimensional features that characterize dynamics in molecular simulations remains a challenge, often requiring extensive manual tuning and system-specific knowledge. Here, we introduce geom2vec, in which pretrained graph neural networks (GNNs) are used as universal geometric featurizers. By pretraining equivariant GNNs on a large dataset of molecular conformations with a self-supervised denoising objective, we obtain transferable structural representations that are useful for learning conformational dynamics without further fine-tuning. We show how the learned GNN representations can capture interpretable relationships between structural units (tokens) by combining them with expressive token mixers. Importantly, decoupling training the GNNs from training for downstream tasks enables analysis of larger molecular graphs (that can represent small proteins at all-atom resolution) with limited computational resources. In these ways, geom2vec eliminates the need for manual feature selection and increases the robustness of simulation analyses. 
    more » « less
  4. Partial point cloud registration is a challenging problem in robotics, especially when the robot undergoes a large transformation, causing a significant initial pose error and a low overlap between measurements. This letter proposes exploiting equivariant learning from 3D point clouds to improve registration robustness. We propose SE3ET, an SE(3)-equivariant registration framework that employs equivariant point convolution and equivariant transformer designs to learn expressive and robust geometric features. We tested the proposed registration method on indoor and outdoor benchmarks where the point clouds are under arbitrary transformations and lowoverlapping ratios.We also provide generalization tests and run-time performance. 
    more » « less
  5. We study the implicit bias of gradient flow on linear equivariant steerable networks in group-invariant binary classification. Our findings reveal that the parameterized predictor converges in direction to the unique group-invariant classifier with a maximum margin defined by the input group action. Under a unitary assumption on the input representation, we establish the equivalence between steerable networks and data augmentation. Furthermore, we demonstrate the improved margin and generalization bound of steerable networks over their non-invariant counterparts. 
    more » « less