skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A note on enhanced dissipation of time-dependent shear flows
This paper explores the phenomena of enhanced dissipation in solutions to the passive scalar equations subject to time-dependent shear flows. The hypocoercivity functionals with carefully tuned time weights are applied in the analysis. We observe that as long as the critical points of the shear flow vary slowly, one can derive the sharp enhanced dissipation estimates, mirroring the ones obtained for the time-stationary case.  more » « less
Award ID(s):
2304392
PAR ID:
10529133
Author(s) / Creator(s):
;
Publisher / Repository:
International Press
Date Published:
Journal Name:
Communications in Mathematical Sciences
Volume:
22
Issue:
6
ISSN:
1539-6746
Page Range / eLocation ID:
1685 to 1700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work lays out the two-potential framework for the constitutive modeling of dielectric elastomers. After its general presentation, where the constraints imposed by even electromechanical coupling, material frame indifference, material symmetry, and entropy imbalance are all spelled out, the framework is utilized to put forth a specific constitutive model for the prominent class of isotropic incompressible dielectric elastomers. The model accounts for the non-Gaussian elasticity and electrostriction typical of such materials, as well as for their deformation-enhanced shear thinning due to viscous dissipation and their time-dependent polarization due to electric dissipation. The key theoretical and practical features of the model are discussed, with special emphasis on its specialization in the limit of small deformations and moderate electric fields. The last part of this paper is devoted to the deployment of the model to fully describe the electromechanical behavior of a commercially significant dielectric elastomer, namely, the acrylate elastomer VHB 4910 from 3M. 
    more » « less
  2. In this paper, we investigate a coupled Patlak-Keller-Segel-Navier-Stokes (PKS-NS) system. We show that globally regular solutions with arbitrary large cell populations exist. The primary blowup suppression mechanism is the shear flow mixing induced enhanced dissipation phenomena. 
    more » « less
  3. Abstract We present a computational study of sliding between gold clusters and a highly oriented pyrolytic graphite substrate, a material system that exhibits ultra-low friction due to structural lubricity. By means of molecular dynamics, it is found that clusters may undergo spontaneous rotations during manipulation as a result of elastic instability, leading to attenuated friction due to enhanced interfacial incommensurability. In the case of a free cluster, shear stresses exhibit a non-monotonic dependency on the strength of the tip-cluster interaction, whereby rigid clusters experience nearly constant shear stresses. Finally, it is shown that the suppression of the translational degrees of freedom of a cluster’s outermost-layer can partially annihilate out-of-plane phonon vibrations, which leads to a reduction of energy dissipation that is in compliance with Stokesian damping. It is projected that the physical insight attained by the study presented here will result in enhanced control and interpretation of manipulation experiments at structurally lubric contacts. 
    more » « less
  4. Abstract We consider absorbing chemical reactions in a fluid flow modelled by the coupled advection–reaction–diffusion equations. In these systems, the interplay between chemical diffusion and fluid transportation causes the enhanced dissipation phenomenon. We show that the enhanced dissipation time scale, together with the reaction coupling strength, determines the characteristic time scale of the reaction. 
    more » « less
  5. Abstract Motivated by the importance of mixing arising from dissipating internal waves (IWs), vertical profiles of internal‐wave dissipation from a high‐resolution regional ocean model are compared with finestructure estimates made from observations. A horizontal viscosity scheme restricted to only act on horizontally rotational modes (such as eddies) is introduced and tested. At lower resolutions with horizontal grid spacings of 2 km, the modeled IW dissipation from numerical model agrees reasonably well with observations in some cases when the restricted form of horizontal viscosity is used. This suggests the possibility that if restricted forms of horizontal viscosity are adopted by global models with similar resolutions, they could be used to diagnose and map IW dissipation distributions. At higher resolutions with horizontal grid spacings of ∼250 m, the dissipation from vertical shear and horizontal viscosity act much more strongly resulting in dissipation overestimates; however, the vertical‐shear dissipation itself is found to agree well with observations. 
    more » « less