skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Source code: Basins modulate signatures of river salinization
This resource contains source code and select data products behind the following Master's Thesis: Platt, L. (2024). Basins modulate signatures of river salinization (Master's thesis). University of Wisconsin-Madison, Freshwater and Marine Sciences. The source code represents an R-based data processing and modeling pipeline written using the R package "targets". Some of the folders in the source code zipfile are intentionally left empty (except for a hidden file ".placeholder") in order for the code repository to be setup with the required folder structure. To execute this code, download the zip folder, unzip, and open the salt-modeling-data.Rproj file. Then, reference the instructions in the README.md file for installing packages, building the pipeline, and examining the results. Newer versions of this repository may be updated in GitHub at github.com/lindsayplatt/salt-modeling-data. In addition to the source code, this resource contains three data files containing intermediate products of the pipeline. The first two represent data prepared for the random forest modeling. Data download and processing were completed in pipeline phases 1 - 5, and the random forest modeling was completed in phase 6 (see source code).  site_attributes.csv which contains the USGS gage site numbers and their associated basin attributes site_classifications.csv which contains the classification of a site for both episodic signatures ("Episodic" or "Not episodic") and baseflow salinization signatures ("positive", "none", "negative", or NA). Note that an NA in the baseflow classification column means that the site did not meet minimum data requirements for calculating a trend and was not used in the random forest model for baseflow salinization. site_attribute_details.csv contains a table of each attribute shorthand used as column names in site_attributes.csv and their names, units, description, and data source.  more » « less
Award ID(s):
2144750
PAR ID:
10529147
Author(s) / Creator(s):
;
Publisher / Repository:
Zenodo
Date Published:
Subject(s) / Keyword(s):
salinization rivers watershed road salt random forest
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. {"Abstract":["# DeepCaImX## Introduction#### Two-photon calcium imaging provides large-scale recordings of neuronal activities at cellular resolution. A robust, automated and high-speed pipeline to simultaneously segment the spatial footprints of neurons and extract their temporal activity traces while decontaminating them from background, noise and overlapping neurons is highly desirable to analyze calcium imaging data. In this paper, we demonstrate DeepCaImX, an end-to-end deep learning method based on an iterative shrinkage-thresholding algorithm and a long-short-term-memory neural network to achieve the above goals altogether at a very high speed and without any manually tuned hyper-parameters. DeepCaImX is a multi-task, multi-class and multi-label segmentation method composed of a compressed-sensing-inspired neural network with a recurrent layer and fully connected layers. It represents the first neural network that can simultaneously generate accurate neuronal footprints and extract clean neuronal activity traces from calcium imaging data. We trained the neural network with simulated datasets and benchmarked it against existing state-of-the-art methods with in vivo experimental data. DeepCaImX outperforms existing methods in the quality of segmentation and temporal trace extraction as well as processing speed. DeepCaImX is highly scalable and will benefit the analysis of mesoscale calcium imaging. ![alt text](https://github.com/KangningZhang/DeepCaImX/blob/main/imgs/Fig1.png)\n\n## System and Environment Requirements#### 1. Both CPU and GPU are supported to run the code of DeepCaImX. A CUDA compatible GPU is preferred. * In our demo of full-version, we use a GPU of Quadro RTX8000 48GB to accelerate the training speed.* In our demo of mini-version, at least 6 GB momory of GPU/CPU is required.#### 2. Python 3.9 and Tensorflow 2.10.0#### 3. Virtual environment: Anaconda Navigator 2.2.0#### 4. Matlab 2023a\n\n## Demo and installation#### 1 (_Optional_) GPU environment setup. We need a Nvidia parallel computing platform and programming model called _CUDA Toolkit_ and a GPU-accelerated library of primitives for deep neural networks called _CUDA Deep Neural Network library (cuDNN)_ to build up a GPU supported environment for training and testing our model. The link of CUDA installation guide is https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html and the link of cuDNN installation guide is https://docs.nvidia.com/deeplearning/cudnn/installation/overview.html. #### 2 Install Anaconda. Link of installation guide: https://docs.anaconda.com/free/anaconda/install/index.html#### 3 Launch Anaconda prompt and install Python 3.x and Tensorflow 2.9.0 as the virtual environment.#### 4 Open the virtual environment, and then  pip install mat73, opencv-python, python-time and scipy.#### 5 Download the "DeepCaImX_training_demo.ipynb" in folder "Demo (full-version)" for a full version and the simulated dataset via the google drive link. Then, create and put the training dataset in the path "./Training Dataset/". If there is a limitation on your computing resource or a quick test on our code, we highly recommand download the demo from the folder "Mini-version", which only requires around 6.3 GB momory in training. #### 6 Run: Use Anaconda to launch the virtual environment and open "DeepCaImX_training_demo.ipynb" or "DeepCaImX_testing_demo.ipynb". Then, please check and follow the guide of "DeepCaImX_training_demo.ipynb" or or "DeepCaImX_testing_demo.ipynb" for training or testing respectively.#### Note: Every package can be installed in a few minutes.\n\n## Run DeepCaImX#### 1. Mini-version demo* Download all the documents in the folder of "Demo (mini-version)".* Adding training and testing dataset in the sub-folder of "Training Dataset" and "Testing Dataset" separately.* (Optional) Put pretrained model in the the sub-folder of "Pretrained Model"* Using Anaconda Navigator to launch the virtual environment and opening "DeepCaImX_training_demo.ipynb" for training or "DeepCaImX_testing_demo.ipynb" for predicting.\n\n#### 2. Full-version demo* Download all the documents in the folder of "Demo (full-version)".* Adding training and testing dataset in the sub-folder of "Training Dataset" and "Testing Dataset" separately.* (Optional) Put pretrained model in the the sub-folder of "Pretrained Model"* Using Anaconda Navigator to launch the virtual environment and opening "DeepCaImX_training_demo.ipynb" for training or "DeepCaImX_testing_demo.ipynb" for predicting.\n\n## Data Tailor#### A data tailor developed by Matlab is provided to support a basic data tiling processing. In the folder of "Data Tailor", we can find a "tailor.m" script and an example "test.tiff". After running "tailor.m" by matlab, user is able to choose a "tiff" file from a GUI as loading the sample to be tiled. Settings include size of FOV, overlapping area, normalization option, name of output file and output data format. The output files can be found at local folder, which is at the same folder as the "tailor.m".\n\n## Simulated Dataset#### 1. Dataset generator (FISSA Version): The algorithm for generating simulated dataset is based on the paper of FISSA (_Keemink, S.W., Lowe, S.C., Pakan, J.M.P. et al. FISSA: A neuropil decontamination toolbox for calcium imaging signals. Sci Rep 8, 3493 (2018)_) and SimCalc repository (https://github.com/rochefort-lab/SimCalc/). For the code used to generate the simulated data, please download the documents in the folder "Simulated Dataset Generator". #### Training dataset: https://drive.google.com/file/d/1WZkIE_WA7Qw133t2KtqTESDmxMwsEkjJ/view?usp=share_link#### Testing Dataset: https://drive.google.com/file/d/1zsLH8OQ4kTV7LaqQfbPDuMDuWBcHGWcO/view?usp=share_link\n\n#### 2. Dataset generator (NAOMi Version): The algorithm for generating simulated dataset is based on the paper of NAOMi (_Song, A., Gauthier, J. L., Pillow, J. W., Tank, D. W. & Charles, A. S. Neural anatomy and optical microscopy (NAOMi) simulation for evaluating calcium imaging methods. Journal of neuroscience methods 358, 109173 (2021)_). For the code use to generate the simulated data, please go to this link: https://bitbucket.org/adamshch/naomi_sim/src/master/code/## Experimental Dataset#### We used the samples from ABO dataset:https://github.com/AllenInstitute/AllenSDK/wiki/Use-the-Allen-Brain-Observatory-%E2%80%93-Visual-Coding-on-AWS.#### The segmentation ground truth can be found in the folder "Manually Labelled ROIs". #### The segmentation ground truth of depth 175, 275, 375, 550 and 625 um are manually labeled by us. #### The code for creating ground truth of extracted traces can be found in "Prepro_Exp_Sample.ipynb" in the folder "Preprocessing of Experimental Sample"."]} 
    more » « less
  2. This dataset contains the data used in the paper (arXiv:2301.02398) on the estimation and subtraction of glitches in gravitational wave data using an adaptive spline fitting method called SHAPES . Each .zip file corresponds to one of the glitches considered in the paper. The name of the class to which the glitch belongs (e.g., "Blip") is included in the name of the corresponding .zip file (e.g., BLIP_SHAPESRun_20221229T125928.zip). When uncompressed, each .zip file expands to a folder containing the following. An HDF5 file containing the Whitened gravitational wave (GW) strain data in which the glitch appeared. The data has been whitened using a proprietary code. The original (unwhitened) strain data file is available from gwosc.org. The name of the original data file is the part preceding the token '__dtrndWhtnBndpss' in the name of the file.A JSON file containing information pertinent to the glitch that was analyzed (e.g., start and stop indices in the whitened data time series).A set of .mat  files containing segmented estimates of the glitch as described in the paper.  A MATLAB script, plotglitch.m, has been provided that plots, for a given glitch folder name, the data segment that was analyzed in the paper. Another script, plotshapesestimate.m, plots the estimated glitch. These scripts require the JSONLab package. 
    more » « less
  3. The raw data for the associated manuscript is organized here into three categories: 1) relating to the measurement and analysis of the native recluse spiders loop junctions, 2) raw images found in the figures throughout the manuscript, and 3) relating to the experiments testing the effect that junction angle has on the strength of two intersecting tapes. It is recommended to browse the data files in Tree mode, which will make the files appear in folders reflecting this organization. 1) Loxosceles Loop Junction Images and Analysis The folder titled, SEM Raw Images, has all of the scanning electron microscopy (SEM) images taken of the native recluse loop junctions. Some images are close-ups of individual junctions and others take a broader perspective (macro) of many loop junctions in series. Where possible several close-up images of the individual junctions are accompanied with a macro image. These images were imported into ImageJ where the junction angle was measured. The measurements for all 41 loop junctions observed are in the folder titled, Raw Data Files in the file titled, Loxosceles Loop Junction Angle Measurements.txt. The folder titled, Raw Data Files contains, in addition to the angle measurements, the raw data for analyzing the strength of individual loop junctions. The data is in native MATLAB data format. These datasets include the complete tensile data and the cross-sectional area data for each spiders silk. The MATLAB code titled, Figure_2A_2B_code, processes the raw tensile data from the natural recluse spiders loop junctions. This data is plotted as two representative curves in Figure 2A and as a complete set as a histogram in Figure 2B. The MATLAB code titled, Figure_7_code, processes and plots the loop junction data found in, Loxosceles Loop Junction Angle Measurements.txt and executed the model of a random set of recluse loops. This code can be executed to generate Figure 7. The folder titled, Raw Data Files, must be open in MATLAB to run this code! This code uses the MATLAB function, areacalculation, to calculate the junction area for a given junction angle. 2) Raw Images This folder is organized by the respective figure in the manuscript where each image can be found. Additional metadata for each image can be found accompanying each image. 3) Tensile Data and Analysis This folder contains all of the raw tensile data for all tape-tape junction experiments conducted. All of the tensile data is in the folder titled, Raw Data Test Files. Within this folder is a .txt file for each sample tested. The file names are critical to the figure codes working properly because they contain the information for the junction angle and iterations. The file names are in the format year-month-day_trialnumber_junctionangle.txt. Also in the Raw Data Test Files folder are two functions used within some of the figure codes: fbfill and areacalculation. These functions will be used in the figure codes to properly analyze the data. To generate any figure using the MATLAB code in this folder, first open the code in MATLAB. Then within MATLAB, open the folder Raw Data Test Files. Only with this folder open in MATLAB will the code be able to find the correct raw data .txt files. The rest of the contents of this folder are MATLAB codes for specific figures in the manuscript. The only exception to this is the code titled, surfaceenergy_code, which is executed to calculate the phenomenological surface energy for the tapes used in these experiments. 
    more » « less
  4. {"Abstract":["Data files were used in support of the research paper titled \u201cMitigating RF Jamming Attacks at the Physical Layer with Machine Learning<\/em>" which has been submitted to the IET Communications journal.<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nAll data was collected using the SDR implementation shown here: https://github.com/mainland/dragonradio/tree/iet-paper. Particularly for antenna state selection, the files developed for this paper are located in 'dragonradio/scripts/:'<\/p>\n\n'ModeSelect.py': class used to defined the antenna state selection algorithm<\/li>'standalone-radio.py': SDR implementation for normal radio operation with reconfigurable antenna<\/li>'standalone-radio-tuning.py': SDR implementation for hyperparameter tunning<\/li>'standalone-radio-onmi.py': SDR implementation for omnidirectional mode only<\/li><\/ul>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nAuthors: Marko Jacovic, Xaime Rivas Rey, Geoffrey Mainland, Kapil R. Dandekar\nContact: krd26@drexel.edu<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nTop-level directories and content will be described below. Detailed descriptions of experiments performed are provided in the paper.<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nclassifier_training: files used for training classifiers that are integrated into SDR platform<\/p>\n\n'logs-8-18' directory contains OTA SDR collected log files for each jammer type and under normal operation (including congested and weaklink states)<\/li>'classTrain.py' is the main parser for training the classifiers<\/li>'trainedClassifiers' contains the output classifiers generated by 'classTrain.py'<\/li><\/ul>\n\npost_processing_classifier: contains logs of online classifier outputs and processing script<\/p>\n\n'class' directory contains .csv logs of each RTE and OTA experiment for each jamming and operation scenario<\/li>'classProcess.py' parses the log files and provides classification report and confusion matrix for each multi-class and binary classifiers for each observed scenario - found in 'results->classifier_performance'<\/li><\/ul>\n\npost_processing_mgen: contains MGEN receiver logs and parser<\/p>\n\n'configs' contains JSON files to be used with parser for each experiment<\/li>'mgenLogs' contains MGEN receiver logs for each OTA and RTE experiment described. Within each experiment logs are separated by 'mit' for mitigation used, 'nj' for no jammer, and 'noMit' for no mitigation technique used. File names take the form *_cj_* for constant jammer, *_pj_* for periodic jammer, *_rj_* for reactive jammer, and *_nj_* for no jammer. Performance figures are found in 'results->mitigation_performance'<\/li><\/ul>\n\nray_tracing_emulation: contains files related to Drexel area, Art Museum, and UAV Drexel area validation RTE studies.<\/p>\n\nDirectory contains detailed 'readme.txt' for understanding.<\/li>Please note: the processing files and data logs present in 'validation' folder were developed by Wolfe et al. and should be cited as such, unless explicitly stated differently. \n\tS. Wolfe, S. Begashaw, Y. Liu and K. R. Dandekar, "Adaptive Link Optimization for 802.11 UAV Uplink Using a Reconfigurable Antenna," MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM), 2018, pp. 1-6, doi: 10.1109/MILCOM.2018.8599696.<\/li><\/ul>\n\t<\/li><\/ul>\n\nresults: contains results obtained from study<\/p>\n\n'classifier_performance' contains .txt files summarizing binary and multi-class performance of online SDR system. Files obtained using 'post_processing_classifier.'<\/li>'mitigation_performance' contains figures generated by 'post_processing_mgen.'<\/li>'validation' contains RTE and OTA performance comparison obtained by 'ray_tracing_emulation->validation->matlab->outdoor_hover_plots.m'<\/li><\/ul>\n\ntuning_parameter_study: contains the OTA log files for antenna state selection hyperparameter study<\/p>\n\n'dataCollect' contains a folder for each jammer considered in the study, and inside each folder there is a CSV file corresponding to a different configuration of the learning parameters of the reconfigurable antenna. The configuration selected was the one that performed the best across all these experiments and is described in the paper.<\/li>'data_summary.txt'this file contains the summaries from all the CSV files for convenience.<\/li><\/ul>"]} 
    more » « less
  5. {"Abstract":["We use open source human gut microbiome data to learn a microbial\n “language” model by adapting techniques from Natural Language Processing\n (NLP). Our microbial “language” model is trained in a self-supervised\n fashion (i.e., without additional external labels) to capture the\n interactions among different microbial taxa and the common compositional\n patterns in microbial communities. The learned model produces\n contextualized taxon representations that allow a single microbial taxon\n to be represented differently according to the specific microbial\n environment in which it appears. The model further provides a sample\n representation by collectively interpreting different microbial taxa in\n the sample and their interactions as a whole. We demonstrate that, while\n our sample representation performs comparably to baseline models in\n in-domain prediction tasks such as predicting Irritable Bowel Disease\n (IBD) and diet patterns, it significantly outperforms them when\n generalizing to test data from independent studies, even in the presence\n of substantial distribution shifts. Through a variety of analyses, we\n further show that the pre-trained, context-sensitive embedding captures\n meaningful biological information, including taxonomic relationships,\n correlations with biological pathways, and relevance to IBD expression,\n despite the model never being explicitly exposed to such signals."],"Methods":["No additional raw data was collected for this project. All inputs\n are available publicly. American Gut Project, Halfvarson, and Schirmer raw\n data are available from the NCBI database (accession numbers PRJEB11419,\n PRJEB18471, and PRJNA398089, respectively). We used the curated data\n produced by Tataru and David, 2020."],"TechnicalInfo":["# Code and data for "Learning a deep language model for microbiomes:\n the power of large scale unlabeled microbiome data" ## Data: *\n vocab_embeddings.npy * Fixed vocabulary embeddings produced from prior\n work: [Decoding the language of microbiomes using word-embedding\n techniques, and applications in inflammatory bowel\n disease](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007859). Adapted from [here](http://files.cqls.oregonstate.edu/David_Lab/microbiome_embeddings/data/embed/). * microbiomedata.zip * Contains the labels and data for the three datasets used in this study. Specifically, it includes: * IBD_(test|train)*(512|otu).npy and IBD*(test|train)_labels.npy * halfvarson_(512_otu|otu).npy and halfvarson_IBD_labels.npy * schirmer_IBD_(512_otu|otu).npy and schirmer_IBD_labels.npy * (test|train)encodings_(512|1897).npy * The data are stored as n_samples x max_sample_size x 2 numpy arrays, containing both the vocab IDs of the taxa in the samples, as well as the abundance values for each taxa. data[:,:,0] will give the vocab IDs, and data[:,:,1] will give the abundances. * Files which mention '512' are truncated to only have up to 512 taxa in them (max_sample_size = 512). * Note that we refer to the schirmer dataset as HMP2 in the paper. * (test|train)encodings_(512|1897).npy represents the full collection of [American Gut Project](https://doi.org/10.1128%2FmSystems.00031-18) data, regardless of whether that data has IBD labels or not, split into train / test splits. * Also contains the folders fruitdata and vegdata containing fruit and vegetable data respectively, and the file README, which documents the contents of the first two folders. * American Gut Project, Halfvarson, and Schirmer raw data are available from the NCBI database (accession numbers PRJEB11419, PRJEB18471, and PRJNA398089, respectively). We used the curated data produced by [Tataru and David, 2020](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007859). * pretrainedmodels.zip * Contains a sequence of pretrained discriminator models across different epochs, allowing users to compute embeddings without having to pretrain models themselves. Each model is stored as a pair of a pytorch_model.bin file containing weights and a config.json file containing model config parameters. Each pair is located in its own folder whose name corresponds to epoch. E.g., "5head5layer_epoch60_disc" stores the discriminator model that were trained for 60 epochs. Model checkpoints can be loaded by providing a path to the pytorch_model.bin file in the --load_disc argument of begin.py in microbiome_transformers-master/finetune_discriminator. * ensemble.zip * Contains the result of an ensemble finetuning run, allowing users to perform interpretability / attribution experiments without having to train models themselves. Each model is similarly stored as a pytorch_model.bin file and config.json file in its own folder. E.g., the run3_epoch0_disc folder stores the model from the third finetuning run (with epoch0 reflecting that the finetuning only takes one epoch). * seqs_.07_embed.fasta * Contains the 16S sequences associated with each taxon vocabulary element of our study, originally produced by prior work: [Decoding the language of microbiomes using word-embedding techniques, and applications in inflammatory bowel disease](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007859). Also available [here](http://files.cqls.oregonstate.edu/David_Lab/microbiome_embeddings/data/embed/seqs_.07_embed.fasta). ## Code/Software: Note that the Dryad repository stores the code and software discussed here is available at [this](https://doi.org/10.5281/zenodo.13858903) site, which is linked under the "Software" tab on the current page.\\ The following software include hardcoded absolute paths to various files of interest (described above). These paths have been changed to be of the form "/path/to/file_of_interest", where the "path/to" portion must be changed to reflect the actual paths on whichever system you run these on. * Attribution_calculations.ipynb * Used to calculate per-sample model prediction scores, per-taxa attribution values (used for interpretability), as well as per-taxa averaged embeddings (used for plotting the taxa). Note the current file is set to compute attributions only for IBD, but can easily be changed for Schirmer/HMP2 and Halfvarson. * Process_Attributions_No_GPU.ipynb * Takes the per-sample prediction scores and the per-taxa attribution values (both from Attribution_calculations.ipynb) and identifies the taxa most and least associated with IBD. * assign_16S_to_phyla.R * An R script that makes phylogenetic assignments to the 16S sequences from seqs_.07_embed.fasta. Invoke with 'Rscript assign_16S_to_phyla.R' and no arguments. * run_blast_with_downloads.sh * Compares the overlap in ASVs between Halfvarson and AGP versus between HMP2 and AGP. Must have BLAST installed. BLAST parameters are set in file, via the results filtering lines ("awk '$5 < 1e-20 && $8 >= 99' | \\\\"), that set the e-value to 20^-20 and the percent similarity to 99%, with one line for each of the two pairwise comparisons. Simply run via "bash run_blast_with_downloads.sh". * Plot_microbiome_transformers_results.ipynb * Loads the averaged taxa embeddings (from Attribution_calculations.ipynb) and the vocabulary embeddings (from [Decoding the language of microbiomes using word-embedding techniques, and applications in inflammatory bowel disease](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007859) / vocab_embeddings.npy), as well as the taxonomic assignments (from assign_16S_to_phyla.R), and generates the various TSNE-based plots of the embedding space geometry. It also generates plots to compare the clustering quality of the averaged embeddings and the vocabulary embeddings. * DeepMicro.zip * A modified version of [DeepMicro](https://github.com/minoh0201/DeepMicro), adapted to more easily run the DeepMicro-based baselines included in our paper. Most additional functionality is described in the 'help' strings of the additional arguments and the docstrings of the functions. In particular, since our data include unlabeled samples witch nonetheless contribute to learning an embedding space, we needed to add a "--pretraining_data" argument to allow such data to be included in the self-supervised learning portion of the baselines. * "convert_data.py" under the "data" folder serves as a utility to help convert from the coordinate-list format of this study to the one-hot abundance table format expected by DeepMicro. * "get_unlabeled_pretraining_data.py" under the "data" folder processes labeled microbiome datasets (fruit, vegetable, and IBD) and extends them with unlabeled data from the American Gut Project (AGP).  * host_to_ids.py under the data/host_to_indices folder will combine metadata from err-to-qid.txt and AG_mapping.txt (both available at *[https://files.cqls.oregonstate.edu/David_Lab/microbiome_embeddings/data/AG_new](https://files.cqls.oregonstate.edu/David_Lab/microbiome_embeddings/data/AG_new)*) with the sequences in seqs_.07_embed.fasta and the numpy data files to create dictionaries that map from host ids to indices in the numpy files, then store those as pickle files. This allow for future training runs from the transformer or the baselines to block their train / validation / test splits by host id. * exps_ae.sh, exps_cae.sh, and exps_baselines.sh are shell scripts with the python commands that run the various DeepMicro-based baselines. * "display_results.py" is a helper for accumulating experimental results and displaying them in a table. * property_pathway_correlations.zip * A folder containing the required code and files to run the property and pathway correlation experiments. * property_pathway_correlations contains three subfolders: * figures: stores output figures such as the heatmap of property - pathway correlation strengths. * csvs: contains gen_hists.py, which takes the outputs of significant correlation counts / strength from metabolic_pathway_correlations.R and plots a histogram to compare the property correlations of the initial vocabulary embeddings with those of the learned embeddings. Also contains significant_correlations_tests.py, which applies non-parametric and permutation tests to statistically determine whether the learned embeddings tend to have stronger property correlations. Also reports the effect size via Cliff's Delta and Cohen's d statistics. * new_hists: will store the histogram generated from gen_hists.py * pathways: stores text and csv outputs, such as the correlation strengths between each property and pathway pair (property_pathway_dict_allsig.txt), the top 20 pathways associated with each property (top20Paths_per_property_(ids|names)_v2.csv), and list of which pathway is most correlated with each property (property_pathway_dict.txt). * metabolic_pathways: contains the code and data required to actually run the correlation tests. The code appears in metabolic_pathway_correlations.R, and simply runs with the command Rscript and no arguments. The data appears in the data subfolder, which itself contains three subfolders: * embed: contains embeddings to be loaded by metabolic_pathway_correlations.R, e.g., merged_sequences_embeddings.txt or glove_emb_AG_newfilter.07_100.txt. Also contains a script assemble_new_embs.py, which lets new embeddings txt files be formatted from a pytorch embeddings tensor, such as the one stored in epoch_120_IBD_avg_vocab_embeddings.pth, as well as seqs_.07_embed.txt. * AG_new/pathways: contains a bunch of files like "corr_matches_i_i+9.RDS", which store intermediate results of the permutation tests, so they don't all have to be calculated at once. Should be recomputed with each run. * pathways: mostly stores various other input and output RDS files: * corr_matches.rds : stores intermediate results of statistical significance testing with model embeddings. Recomputed each time. * corr_matches_pca.rds : stores prior result of statistical significance testing with PCA embeddings. Loaded from storage by default. * filtered_otu_pathway_table.RDS / txt : stores associations of each taxa vocab entry with metabolic pathways, filtered to exclude pathways that are no longer present in KEGG. * pathway_table.RDS : updated pathway table saved by metabolic_pathway_correlations.R each run. * pca_embedded_taxa.rds : stores PCA embeddings of all the vocab taxa entries. * microbiome_transformers.zip * A backup of our [GitHub repository](https://github.com/QuintinPope/microbiome_transformers) for the model architecture (both generator and discriminator), the pretraining processes for both, as well as the model finetuning scripts. Contains its own READMEs. * Has the code for pretraining generator models. See pretrain_generator/train_command.sh and pretrain_generator/README.MD * Has the code for using those models to pretrain discriminator models. See pretrain_discriminator/train_command.sh and pretrain_discriminator/README.MD * Has the code for finetuning those pretrained discriminator models on the classification data in our study (both within-distribution experiments and out of distribution experiments). * See finetune_discriminator/README.MD for general info on finetuning. * See finetune_discriminator/run_agp_agp_exps.sh for the commands to run the in-distribution experiments. * See finetune_discriminator/run_agp_HF_SH_cross_gen_ensemble_tests.sh to run the out of distribution experiments using an ensemble of models. * See finetune_discriminator/run_agp_HF_SH_cross_gen_val_set_tests.sh to run the out of distribution experiments without an ensemble and using a val set for stopping condition. ## File Structures: **microbiomedata.zip** ``` |____total_IBD_otu.npy |____IBD_train_512.npy |____halfvarson_IBD_labels.npy |____IBD_train_otu.npy |____test_encodings_512.npy |____total_IBD_512.npy |____train_encodings_512.npy |____schirmer_IBD_labels.npy |____schirmer_IBD_512_otu.npy |____fruitdata | |____FRUIT_FREQUENCY_all_label.npy | |____FRUIT_FREQUENCY_otu_512.npy | |____FRUIT_FREQUENCY_binary24_labels.npy | |____FRUIT_FREQUENCY_all_otu.npy | |____FRUIT_FREQUENCY_binary34_labels.npy |____vegdata | |____VEGETABLE_FREQUENCY_all_label.npy | |____VEGETABLE_FREQUENCY_binary24_labels.npy | |____VEGETABLE_FREQUENCY_otu_512.npy | |____VEGETABLE_FREQUENCY_all_otu.npy | |____VEGETABLE_FREQUENCY_binary34_labels.npy |____README |____schirmer_IBD_otu.npy |____IBD_test_label.npy |____IBD_test_512.npy |____IBD_train_label.npy |____IBD_test_otu.npy |____test_encodings_1897.npy |____halfvarson_otu.npy |____halfvarson_512_otu.npy |____total_IBD_label.npy |____train_encodings_1897.npy ``` **pretrainedmodels.zip** ``` ____5head5layer_epoch60_disc | |____config.json | |____pytorch_model.bin |____5head5layer_epoch30_disc | |____config.json | |____pytorch_model.bin |____5head5layer_epoch105_disc | |____config.json | |____pytorch_model.bin |____5head5layer_epoch0_disc | |____config.json | |____pytorch_model.bin |____5head5layer_epoch45_disc | |____config.json | |____pytorch_model.bin |____5head5layer_epoch90_disc | |____config.json | |____pytorch_model.bin |____5head5layer_epoch120_disc | |____config.json | |____pytorch_model.bin |____5head5layer_epoch15_disc | |____config.json | |____pytorch_model.bin |____5head5layer_epoch75_disc | |____config.json | |____pytorch_model.bin ``` **ensemble.zip** ``` |____run4_epoch0_disc | |____config.json | |____pytorch_model.bin |____run8_epoch0_disc | |____config.json | |____pytorch_model.bin |____run1_epoch0_disc | |____config.json | |____pytorch_model.bin |____run2_epoch0_disc | |____config.json | |____pytorch_model.bin |____run10_epoch0_disc | |____config.json | |____pytorch_model.bin |____run7_epoch0_disc | |____config.json | |____pytorch_model.bin |____run9_epoch0_disc | |____config.json | |____pytorch_model.bin |____run5_epoch0_disc | |____config.json | |____pytorch_model.bin |____run6_epoch0_disc | |____config.json | |____pytorch_model.bin |____run3_epoch0_disc | |____config.json | |____pytorch_model.bin ``` **DeepMicro.zip** ``` |____LICENSE |____deep_env_config.yml |____DM.py |____exception_handle.py |____README.md |____exps_cae.sh |____exps_ae.sh |____exps_baselines.sh |____results | |____display_results.py | |____plots |____data | |____host_to_indices | | |____host_to_ids.py | |____marker.zip | |____UserLabelExample.csv | |____convert_data.py | |____get_unlabeled_pretraining_data.py | |____UserDataExample.csv | |____abundance.zip |____DNN_models.py ``` **property_pathway_correlations.zip** ``` |____metabolic_pathways | |____metabolic_pathway_correlations.R | |____data | | |____AG_new | | | |____pathways | | | | |____corr_matches_141_150.RDS | | | | |____corr_matches_81_90.RDS | | | | |____corr_matches_21_30.RDS | | | | |____corr_matches_51_60.RDS | | | | |____corr_matches_121_130.RDS | | | | |____corr_matches_101_110.RDS | | | | |____corr_matches_61_70.RDS | | | | |____corr_matches_31_40.RDS | | | | |____corr_matches_131_140.RDS | | | | |____corr_matches_181_190.RDS | | | | |____corr_matches_161_170.RDS | | | | |____corr_matches_11_20.RDS | | | | |____corr_matches_1_10.RDS | | | | |____corr_matches_191_200.RDS | | | | |____corr_matches_171_180.RDS | | | | |____corr_matches_71_80.RDS | | | | |____corr_matches_91_100.RDS | | | | |____corr_matches_111_120.RDS | | | | |____corr_matches_41_50.RDS | | | | |____corr_matches_151_160.RDS | | |____embed | | | |____seqs_.07_embed.txt | | | |____merged_sequences_embeddings.txt | | | |____assemble_new_embs.py | | | |____epoch_120_IBD_avg_vocab_embeddings.pth | | | |____glove_emb_AG_newfilter.07_100.txt | | |____pathways | | | |____filtered_otu_pathway_table.RDS | | | |____pca_embedded_taxa.rds | | | |____pathway_table.RDS | | | |____corr_matches.rds | | | |____filtered_otu_pathway_table.txt | | | |____corr_matches_pca.rds |____figures | |____csvs | | |____significant_correlations_tests.py | | |____gen_hists.py | |____new_hists |____pathways | |____top20Paths_per_property_ids_v2.csv | |____top20Paths_per_property_names_v2.csv | |____property_pathway_dict_allsig.txt | |____property_pathway_dict.txt ``` **microbiome_transformers.zip** ``` |____electra_trace.py |____multitaskfinetune | |____begin.py | |____pretrain_hf.py | |____electra_discriminator.py | |____dataset.py | |____startup |____finetune_discriminator | |____begin.py | |____pretrain_hf.py | |____electra_pretrain_model.py | |____electra_discriminator.py | |____run_agp_agp_exps.sh | |____run_agp_HF_SH_cross_gen_val_set_tests.sh | |____run_agp_HF_SH_cross_gen_ensemble_tests.sh | |____hf_startup_3 | |____hf_startup_4 | |____README.MD | |____dataset.py | |____torch_rbf.py |____combine_sets.py |____pretrain_discriminator | |____begin.py | |____pretrain_hf.py | |____electra_pretrain_model.py | |____hf_startup | |____README.MD | |____train_command.sh | |____dataset.py |____benchmark_startup |____pretrain_generator | |____begin.py | |____pretrain_hf.py | |____electra_pretrain_model.py | |____hf_startup | |____README.MD | |____train_command.sh | |____dataset.py |____README.md |____compress_data.py |____generate_commands.py |____attention_benchmark | |____begin.py | |____pretrain_hf.py | |____electra_discriminator.py | |____hf_startup | |____dataset.py |____data_analyze.py |____benchmarks.py ``` # Usage Instructions Intended to cover both repeating the experiments we performed in our paper, or extending our methods to new datasets: * Prepare input data and initial embeddings * Vocabulary: Set the initial vocabulary size to accommodate all the unique OTUs/ASVs found in the data, plus special tokens such as mask, padding, and cls tokens. * Initial embeddings: Each vocabulary element (including special tokens) is assigned a unique embedding vector. * Input data format: Given the highly sparse nature of most microbiome samples relative to vocabulary size, we store each sample’s abundance information in coordinate-list format. I.e., a data file is a numpy array of size (n_samples, max_sample_size, 2), and each sample is stored as a (max_sample_size, 2) array.  * Pretrain a language model on those embeddings * ELECTRA generators: Pretrain a sequence of generator models on unsupervised microbiome data. See pretrain_generator/train_command.sh and pretrain_generator/README.MD in microbiome_transformers.zip * ELECTRA discriminators: Pretrain a sequence of discriminator models on unsupervised microbiome data using outputs from the previously trained generators to generate substitutions for the original sequences. See pretrain_discriminator/train_command.sh and pretrain_discriminator/README.MD in microbiome_transformers.zip * Characterize the language model with the following interpretability steps: * Perform taxonomic assignments: Use assign_16S_to_phyla.R (or similar R code) to map your sequences to the phylogenetic hierarchy. * Attribution calculations: Use Attribution_calculations.ipynb to calculate per-sample model prediction scores, per-taxa attribution values (used for interpretability), as well as per-taxa averaged embeddings (used for plotting the taxa). * Embeddings visualizations and embedding space clustering: * Provide Plot_microbiome_transformers_results.ipynb with the paths to your per-taxa averaged embeddings calculated above, initial vocabulary embeddings (equivalent of vocab_embeddings.npy), and taxonomic assignments. * It will help generate TSNE visualizations of the two embedding spaces, as well as cross-comparisons of where taxa in one embedding space appear in the other embedding space. * The notebook contains preset regions for which parts of the two embedding spaces to compare (via bounding boxes with the select_by_rectangles function). These regions will likely not work for a new dataset, so you'll have to change them. * Finally, the notebook will also plot graphs comparing the clusterability of the data in the original two embedding spaces (non TSNE), so as to not be fooled by the dimension reduction technique. * Identify high-attribution taxa: * Process_Attributions_No_GPU.ipynb takes the per-sample prediction scores and the per-taxa attribution values (both from Attribution_calculations.ipynb) and identifies the taxa most and least associated with IBD. * It also includes filtration steps for the attribution calculations (e.g., only analyze taxa that appear >= 5 times, only use attribution scores that are confident and correct, etc), reflecting those we used in the paper.  * The notebook will identify the taxa IDs of the top and bottom attributed taxa, then it will use seqs_.07_embed.fasta (or similar taxa-ID mapping) to print the 16S sequences associated with those taxa. * Pathway correlations: * Use assemble_new_embs.py to format pytorch vocab embedding files into the expected format for metabolic_pathway_correlations.R * Use metabolic_pathway_correlations.R (in the metabolic_pathways folder of property_pathway_correlations.zip) to produce heatmaps of embedding dim / metabolic pathway correlation strengths, and to save a file with the statistically significant correlation data. * Use gen_hists.py (in the figures/csvs folder of property_pathway_correlations.zip) to generate histograms comparing embedding dim / pathway correlation strengths of the initial fixed embeddings with those of the learned contextual embeddings. * Use significant_correlations_tests.py (also in the figures/csvs folder of property_pathway_correlations.zip) to apply non-parametric statistical tests to determine whether the distribution of embedding dim / pathway correlation strengths from the learned contextual embeddings is shifted right compared to those from the fixed embeddings. * Evaluate the language model for downstream task * First, account for any patients who have multiple samples in the dataset by blocking out any train / validation / test splits you perform by patient ID. Future steps will assume you have dictionaries (stored as pickle files) that map from some patient ID strings (which just need to be unique per patient) to indices of the data files (i.e., you need one mapping dict per training data file). In general, the way to do this will depend on how your patient metadata is structured. You can look to host_to_ids.py (in DeepMicro.zip) to see how we combined metadata from multiple files and compared that with the different training data numpy files to produce this mapping. * To run experiments using our paper's transformer methods: * "Within distribution" evaluations: Relevant commands are in finetune_discriminator/run_agp_agp_exps.sh in microbiome_transformers.zip * "Out of distribution" evaluations: Relevant commands are in finetune_discriminator/run_agp_HF_SH_cross_gen_ensemble_tests.sh (when using an ensemble of models) and finetune_discriminator/run_agp_HF_SH_cross_gen_val_set_tests.sh (without using an ensemble and when using a val set for stopping condition). Both are in microbiome_transformers.zip * See also finetune_discriminator/README.MD in microbiome_transformers.zip for more general information about the finetuning functionality * To run experiments using the DeepMicro-derived baseline methods: * See exps_ae.sh, exps_cae.sh, and exps_baselines.sh in DeepMicro.zip for the experiment commands (for both in-distribution and out of distribution experiments) * Also see README.md in DeepMicro.zip for more general information on using DeepMicro and our modifications to it. ## Changelog: **01/29/2025** Updated significant_correlations_tests.py to apply permutation testing and report Cohan's d and Cliff's Delta. Added run_blast_with_downloads.sh, which reports how many taxa in Halfvarson match to any taxa in AGP and how many taxa in Schirmer match any taxa in AGP. It's a way of comparing which of Schirmer or Halfvarson is more similar to AGP in terms of taxa that are present. We also slightly clarified the README's language to make it clearer where the software can be found."]} 
    more » « less