Abstract We report our findings on a spectroscopic survey of seven unresolved DA+DB binary white dwarf candidates. We have discovered extreme spectroscopic variations in one of these candidates, SDSS J084716.21+484220.40. Previous analysis failed to reproduce the optical spectrum using a single object with a homogeneous atmosphere. Our time-resolved spectroscopy reveals a double-faced white dwarf that switches between a DBA and DA spectral type over 6.5 or 8.9 hr due to varying surface abundances. We also provide time-series spectroscopy of the magnetic DBA, SDSS J085618.94+161103.6 (LB 8915), and confirm an inhomogeneous atmosphere. We employ an atmosphere model with hydrogen caps and a helium belt that yields excellent fits to our time-resolved spectra. We use the oblique rotator model to derive the system geometry for both targets. With the addition of these two objects, the emerging class of double-faced white dwarfs now consists of seven members. We summarize the properties of this new class of objects, and discuss how magnetism impacts the convective processes and leads to the formation of double-faced white dwarfs. We identify cooler versions of white dwarfs with inhomogeneous atmospheres among the cool magnetic DA white dwarf sample, where the Hαline is shallower than expected based on pure hydrogen atmosphere models.
more »
« less
Discovery of a magnetic double-faced DBA white dwarf
ABSTRACT We report the discovery of spectroscopic variations in the magnetic DBA white dwarf SDSS J091016.43+210554.2. Follow-up time-resolved spectroscopy at the Apache Point Observatory (APO) and the MMT show significant variations in the H absorption lines over a rotation period of 7.7 or 11.3 h. Unlike recent targets that show similar discrepancies in their H and He line profiles, such as GD 323 and Janus (ZTF J203349.8+322901.1), SDSS J091016.43+210554.2 is confirmed to be magnetic, with a field strength derived from Zeeman-split H and He lines of B ≈ 0.5 MG. Model fits using a H and He atmosphere with a constant abundance ratio across the surface fail to match our time-resolved spectra. On the other hand, we obtain excellent fits using magnetic atmosphere models with varying H/He surface abundance ratios. We use the oblique rotator model to fit the system geometry. The observed spectroscopic variations can be explained by a magnetic inhomogeneous atmosphere where the magnetic axis is offset from the rotation axis by β = 52°, and the inclination angle between the line of sight and the rotation axis is i = 13–16°. This magnetic white dwarf offers a unique opportunity to study the effect of the magnetic field on surface abundances. We propose a model where H is brought to the surface from the deep interior more efficiently along the magnetic field lines, thus producing H polar caps.
more »
« less
- Award ID(s):
- 2205736
- PAR ID:
- 10529150
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 527
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 10111 to 10122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report the discovery of an isolated white dwarf with a spin period of 70 s. We obtained high-speed photometry of three ultramassive white dwarfs within 100 pc and discovered significant variability in one. SDSS J221141.80+113604.4 is a 1.27 M ⊙ (assuming a CO core) magnetic white dwarf that shows 2.9% brightness variations in the BG40 filter with a 70.32 ± 0.04 s period, becoming the fastest spinning isolated white dwarf currently known. A detailed model atmosphere analysis shows that it has a mixed hydrogen and helium atmosphere with a dipole field strength of B d = 15 MG. Given its large mass, fast rotation, strong magnetic field, unusual atmospheric composition, and relatively large tangential velocity for its cooling age, J2211+1136 displays all of the signatures of a double white dwarf merger remnant. Long-term monitoring of the spin evolution of J2211+1136 and other fast-spinning isolated white dwarfs opens a new discovery space for substellar and planetary mass companions around white dwarfs. In addition, the discovery of such fast rotators outside of the ZZ Ceti instability strip suggests that some should also exist within the strip. Hence, some of the monoperiodic variables found within the instability strip may be fast-spinning white dwarfs impersonating ZZ Ceti pulsators.more » « less
-
G183−35 is an unusual white dwarf that shows an Hα line split into five components, instead of the usual three components seen in strongly magnetic white dwarfs. Potential explanations for the unusual set of lines includes a double degenerate system containing two magnetic white dwarfs and/or rotational modulation of a complex magnetic field structure. Here we present time-resolved spectroscopy of G183−35 obtained at the Gemini Observatory. These data reveal two sets of absorption lines that appear and disappear over a period of about 4 hours. We also detect low-level (0.2%) variability in optical photometry at the same period. We demonstrate that the spectroscopic and photometric variability can be explained by the presence of spots on the surface of the white dwarf and a change in the average field strength from about 4.6 MG to 6.2 MG. The observed variability is clearly due to G183−35’s relatively short spin period. However, rotational modulation of a complex magnetic field by itself cannot explain the changes seen in the central Hα component. An additional source of variability in the line profiles, most likely due to a chemically inhomogeneous surface composition, is also needed. We propose further observations of similar objects to test this scenario.more » « less
-
ABSTRACT We present an analysis of spectroscopic data of the cool, highly magnetic, and polluted white dwarf 2MASS J0916−4215. The atmosphere of the white dwarf is dominated by hydrogen, but numerous spectral lines of magnesium, calcium, titanium, chromium, iron, and strontium, along with Li i, Na i, Al i, and K i lines, are found in the incomplete Paschen–Back regime, most visibly, in the case of Ca ii lines. Extensive new calculations of the Paschen–Back effect in several spectral lines are presented and results of the calculations are tabulated for the Ca ii H&K doublet. The abundance pattern shows a large lithium and strontium excess, which may be viewed as a signature of planetary debris akin to Earth’s continental crust accreted on to the star, although the scarcity of silicon indicates possible dilution in bulk Earth material. Accurate abundance measurements proved sensitive to the value of the broadening parameter due to collisions with neutral hydrogen (Gamma H i), particularly in saturated lines such as the resonance lines of Ca i and Ca ii. We found that Gamma i if formulated with values from the literature could be overestimated by a factor of 10 in most resonance lines.more » « less
-
Abstract Average magnetic field measurements are presented for 62 M-dwarf members of the Pleiades open cluster, derived from Zeeman-enhanced Feilines in theHband. A Markov Chain Monte Carlo methodology was employed to model magnetic filling factors using Sloan Digital Sky Survey (SDSS) IV APOGEE high-resolution spectra, along with the radiative transfer code Synmast, MARCS stellar atmosphere models, and the APOGEE Data Release 17 spectral line list. There is a positive correlation between mean magnetic fields and stellar rotation, with slow-rotator stars (Rossby number, Ro > 0.13) exhibiting a steeper slope than rapid rotators (Ro < 0.13). However, the latter sample still shows a positive trend between Ro and magnetic fields, which is given by 〈B〉 = 1604 × Ro−0.20. The derived stellar radii when compared with physical isochrones show that, on average, our sample shows radius inflation, with median enhanced radii ranging from +3.0% to +7.0%, depending on the model. There is a positive correlation between magnetic field strength and radius inflation, as well as with stellar spot coverage, correlations which together indicate that stellar spot-filling factors generated by strong magnetic fields might be the mechanism that drives radius inflation in these stars. We also compare our derived magnetic fields with chromospheric emission lines (Hα, Hβ, and CaiiK), as well as with X-ray and Hαto bolometric luminosity ratios, and find that stars with higher chromospheric and coronal activity tend to be more magnetic.more » « less
An official website of the United States government

