Abstract WASP-107 b seems to be a poster child of the long-suspected high-eccentricity migration scenario. It is on a 5.7 day, polar orbit. The planet is Jupiter-like in radius but Neptune-like in mass with exceptionally low density. WASP-107 c is on a 1100 day,e= 0.28 orbit with at least Saturn mass. Planet b may still have a residual eccentricity of 0.06 ± 0.04: the ongoing tidal dissipation leads to the observed internally heated atmosphere and hydrodynamic atmospheric erosion. We present a population synthesis study coupling octupole Lidov–Kozai oscillations with various short-range forces, while simultaneously accounting for the radius inflation and tidal disruption of the planet. We find that a high-eccentricity migration scenario can successfully explain nearly all observed system properties. Our simulations further suggest that the initial location of WASP-107 b at the onset of migration is likely within the snowline (<0.5 au). More distant initial orbits usually lead to tidal disruption or orbit crossing. WASP-107 b most likely lost no more than 20% of its mass during the high-eccentricity migration, i.e., it did not form as a Jupiter-mass object. More vigorous tidally induced mass loss leads to disruption of the planet during migration. We predict that the current-day mutual inclination between the planets b and c is substantial: at least 25°–55°, which may be tested with future Gaia astrometric observations. Knowing the current-day mutual inclination may further constrain the initial orbit of planet b. We suggest that the proposed high-eccentricity migration scenario of WASP-107 may be applicable to HAT-P-11, GJ-3470, HAT-P-18, and GJ-436, which have similar orbital architectures.
more »
« less
Chaotic tides as a solution to the Hyperion problem
The dynamics of the outer regular satellites of Saturn are driven primarily by the outward migration of Titan, but several independent constraints on Titan's migration are difficult to reconcile with the current resonant orbit of the small satellite Hyperion. We argue that Hyperion's rapid irregular tumbling greatly increases tidal dissipation with a steep dependence on orbital eccentricity. Resonant excitation from a migrating Titan is then balanced by damping in a feedback mechanism that maintains Hyperion's eccentricity without fine-tuning. The inferred tidal parameters of Hyperion are most consistent with rapid Titan migration enabled by a resonance lock with an internal mode of Saturn, but a scenario with only equilibrium dissipation in Saturn is also possible.
more »
« less
- Award ID(s):
- 2109276
- PAR ID:
- 10529225
- Publisher / Repository:
- Elsavier
- Date Published:
- Journal Name:
- Icarus
- Volume:
- 413
- Issue:
- C
- ISSN:
- 0019-1035
- Page Range / eLocation ID:
- 116014
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The sub-Jovian exoplanet WASP-107b ranks among the best-characterized low-density worlds, featuring a Jupiter-like radius and a mass that lies firmly in the sub-Saturn range. Recently obtained JWST spectra reveal significant methane depletion in the atmosphere, indicating that WASP-107b’s envelope has both a high metallicity and an elevated internal heat flux. Together with a detected nonzero orbital eccentricity, these data have been interpreted as evidence of tidal heating. However, explaining the observed luminosity with tidal dissipation requires an unusually low tidal quality factor ofQ∼ 100. Moreover, we find that secular excitation by the radial-velocity-detected outer companion WASP-107c generally cannot sustain WASP-107b’s eccentricity in steady state against tidal circularization. As an alternative explanation, we propose that ohmic dissipation—generated by interactions between zonal flows and the planetary magnetic field in a partially ionized atmosphere—maintains the observed thermal state. Under nominal assumptions for the field strength, atmospheric circulation, and ionization chemistry, we show that ohmic heating readily accounts for WASP-107b’s inflated radius and anomalously large internal entropy.more » « less
-
Abstract Highly eccentric orbits are one of the major surprises of exoplanets relative to the solar system and indicate rich and tumultuous dynamical histories. One system of particular interest is Kepler-1656, which hosts a sub-Jovian planet with an eccentricity of 0.8. Sufficiently eccentric orbits will shrink in the semimajor axis due to tidal dissipation of orbital energy during periastron passage. Here our goal was to assess whether Kepler-1656b is currently undergoing such high-eccentricity migration, and to further understand the system’s origins and architecture. We confirm a second planet in the system withMc= 0.40 ± 0.09Mjupand Pc= 1919 ± 27 days. We simulated the dynamical evolution of planet b in the presence of planet c and find a variety of possible outcomes for the system, such as tidal migration and engulfment. The system is consistent with an in situ dynamical origin of planet b followed by subsequent eccentric Kozai–Lidov perturbations that excite Kepler-1656b’s eccentricity gently, i.e., without initiating tidal migration. Thus, despite its high eccentricity, we find no evidence that planet b is or has migrated through the high-eccentricity channel. Finally, we predict the outer orbit to be mutually inclined in a nearly perpendicular configuration with respect to the inner planet orbit based on the outcomes of our simulations and make observable predictions for the inner planet’s spin–orbit angle. Our methodology can be applied to other eccentric or tidally locked planets to constrain their origins, orbital configurations, and properties of a potential companion.more » « less
-
ABSTRACT Tidal dissipation due to turbulent viscosity in the convective regions of giant stars plays an important role in shaping the orbits of pre-common-envelope systems. Such systems are possible sources of transients and close compact binary systems that will eventually merge and produce detectable gravitational wave signals. Most previous studies of the onset of common envelope episodes have focused on circular orbits and synchronously rotating donor stars under the assumption that tidal dissipation can quickly spin-up the primary and circularize the orbit before the binary reaches Roche lobe overflow (RLO). We test this assumption by coupling numerical models of the post-main-sequence stellar evolution of massive stars with the model for tidal dissipation in convective envelopes developed in Vick & Lai – a tidal model that is accurate even for highly eccentric orbits with small pericentre distances. We find that, in many cases, tidal dissipation does not circularize the orbit before RLO. For a $$10\, {\rm M}_{\odot }$$ ($$15\, {\rm M}_{\odot }$$) primary star interacting with a $$1.4\, {\rm M}_{\odot }$$ companion, systems with pericentre distances within 3 au (6 au) when the primary leaves the main sequence will retain the initial orbital eccentricity when the primary grows to the Roche radius. Even in systems that tidally circularize before RLO, the donor star may be rotating subsynchronously at the onset of mass transfer. Our results demonstrate that some possible precursors to double neutron star systems are likely eccentric at the Roche radius. The effects of pre-common-envelope eccentricity on the resulting compact binary merit further study.more » « less
-
Abstract We investigate observations of circumbinary disks (CBDs) to find evidence for an equilibrium eccentricity predicted by current binary accretion theory. Although stellar binary demographics in the Milky Way show no evidence for a preferred eccentricity for binary systems, we show that actively accreting systems lie on a predicted equilibrium eccentricity curve. We constrain our sample to only systems that have well-defined orbital parameters (e.g., eccentricity, mass ratio, inclination angle). We find observations are consistent with theory for stellar binaries that are aligned with the disk and that are separated enough that tidal circularization is negligible. This suggests that eccentricity in these systems evolves after the dissipation of the CBD, given the flat eccentricity distribution of binary systems in the Milky Way.more » « less
An official website of the United States government

