Diversity in the properties of exoplanetary systems arises, in part, from dynamical evolution that occurs after planet formation. We use numerical integrations to explore the relative role of secular and resonant dynamics in the long-term evolution of model planetary systems, made up of three equal mass giant planets on initially eccentric orbits. The range of separations studied is dominated by secular processes, but intersects chains of high-order mean-motion resonances. Over time-scales of 108 orbits, the secular evolution of the simulated systems is predominantly regular. High-order resonant chains, however, can be a significant source of angular momentum deficit (AMD), leading to instability. Using a time series analysis based on a Hilbert transform, we associate instability with broad islands of chaotic evolution. Previous work has suggested that first-order resonances could modify the AMD of nominally secular systems and facilitate secular chaos. We find that higher order resonances, when present in chains, can have similar impacts.
- Award ID(s):
- 2109276
- PAR ID:
- 10529261
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Icarus
- Volume:
- 388
- Issue:
- C
- ISSN:
- 0019-1035
- Page Range / eLocation ID:
- 115206
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract Multiplanetary systems are prevalent in our Galaxy. The long-term stability of such systems may be disrupted if a distant inclined companion excites the eccentricity and inclination of the inner planets via the eccentric Kozai–Lidov mechanism. However, the star–planet and the planet–planet interactions can help stabilize the system. In this work, we extend the previous stability criterion that only considered the companion–planet and planet–planet interactions by also accounting for short-range forces or effects, specifically, relativistic precession induced by the host star. A general analytical stability criterion is developed for planetary systems with N inner planets and a relatively distant inclined perturber by comparing precession rates of relevant dynamical effects. Furthermore, we demonstrate as examples that in systems with two and three inner planets, the analytical criterion is consistent with numerical simulations using a combination of Gauss’s averaging method and direct N -body integration. Finally, the criterion is applied to observed systems, constraining the orbital parameter space of a possible undiscovered companion. This new stability criterion extends the parameter space in which an inclined companion of multiplanet systems can inhabit.more » « less
-
Abstract Orbital evolution is a critical process that sculpts planetary systems, particularly during their early stages where planet–disk interactions are expected to lead to the formation of resonant chains. Despite the theoretically expected prominence of such configurations, they are scarcely observed among long-period giant exoplanets. This disparity suggests an evolutionary sequence wherein giant planet systems originate in compact multiresonant configurations, but subsequently become unstable, eventually relaxing to wider orbits—a phenomenon mirrored in our own solar system’s early history. In this work, we present a suite of
N -body simulations that model the instability-driven evolution of giant planet systems, originating from resonant initial conditions, through phases of disk dispersal and beyond. By comparing the period ratio and normalized angular momentum distributions of our synthetic aggregate of systems with the observational census of long-period Jovian planets, we derive constraints on the expected rate of orbital migration, the efficiency of gas-driven eccentricity damping, and typical initial multiplicity. Our findings reveal a distinct inclination toward densely packed initial conditions, weak damping, and high giant planet multiplicities. Furthermore, our models indicate that resonant chain origins do not facilitate the formation of Hot Jupiters via the coplanar high-eccentricity pathway at rates high enough to explain their observed prevalence. -
Abstract Compact nonresonant systems of sub-Jovian planets are the most common outcome of the planet formation process. Despite exhibiting broad overall diversity, these planets also display dramatic signatures of intrasystem uniformity in their masses, radii, and orbital spacings. Although the details of their formation and early evolution are poorly known, sub-Jovian planets are expected to emerge from their natal nebulae as multiresonant chains, owing to planet–disk interactions. Within the context of this scenario, the architectures of observed exoplanet systems can be broadly replicated if resonances are disrupted through postnebular dynamical instabilities. Here, we generate an ad hoc sample of resonant chains and use a suite of N -body simulations to show that instabilities can not only reproduce the observed period ratio distribution, but that the resulting collisions also modify the mass uniformity in a way that is consistent with the data. Furthermore, we demonstrate that primordial mass uniformity, motivated by the sample of resonant chains coupled with dynamical sculpting, naturally generates uniformity in orbital period spacing similar to what is observed. Finally, we find that almost all collisions lead to perfect mergers, but some form of postinstability damping is likely needed to fully account for the present-day dynamically cold architectures of sub-Jovian exoplanets.more » « less
-
ABSTRACT Closely packed multiplanet systems are known to experience dynamical instability if the spacings between the planets are too small. Such instability can be tempered by the frictional forces acting on the planets from gaseous discs. A similar situation applies to stellar-mass black holes embedded in active galactic nuclei discs around supermassive black holes. We use N-body integrations to evaluate how the frictional damping of orbital eccentricity affects the growth of dynamical instability for a wide range of K (the difference in the planetary semimajor axes in units of the mutual Hill radius) and (unequal) planet masses. We find that, in general, the stable region (large K) and unstable region (small K) are separated by a “grey zone”, where the (in)stability is not guaranteed. We report the numerical values of the critical spacing for stability Kcrit and the “grey zone” range in different systems, and provide fitting formulae for arbitrary frictional forcing strength. We show that the stability of a system depends on the damping time-scale τ relative to the zero-friction instability growth time-scale tinst: two-planet systems are stable if tinst ≳ τ; three-planet systems require tinst ≳ 10τ−100τ. When K is sufficiently small, tinst can be less than the synodic period between the planets, which makes frictional stabilization unlikely to occur. As K increases, tinst tends to grow exponentially, but can also fluctuate by a few orders of magnitude. We also devise a linear map to analyse the dynamical instability of the “planet + test mass” system, and find qualitative agreement with N-body simulations.