skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Which Hessenberg varieties are GKM?
Hessenberg varieties H(X,H) form a class of subvarieties of the flag variety G/B, parameterized by an operator X and certain subspaces H of the Lie algebra of G. We identify several families of Hessenberg varieties in type A_{n−1} that are T -stable subvarieties of G/B, as well as families that are invariant under a subtorus K of T. In particular, these varieties are candidates for the use of equivariant methods to study their geometry. Indeed, we are able to show that some of these varieties are unions of Schubert varieties, while others cannot be such unions. Among the T-stable Hessenberg varieties, we identify several that are GKM spaces, meaning T acts with isolated fixed points and a finite number of one-dimensional orbits, though we also show that not all Hessenberg varieties with torus actions and finitely many fixed points are GKM. We conclude with a series of open questions about Hessenberg varieties, both in type A_{n−1} and in general Lie type.  more » « less
Award ID(s):
2152312 2054513
PAR ID:
10529262
Author(s) / Creator(s):
;
Editor(s):
Karshon, Yael; Melrose, Richard; Uhlmann, Gunther; Uribe, Alejandro
Publisher / Repository:
Pure and Applied Math Quarterly
Date Published:
Journal Name:
Pure and Applied Mathematics Quarterly
Volume:
19
Issue:
4
ISSN:
1558-8599
Page Range / eLocation ID:
1899 to 1942
Subject(s) / Keyword(s):
Hessenberg varieties, GKM spaces, GKM theory, Schubert varieties
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tu, Loring W (Ed.)
    We aim in this manuscript to describe a specific notion of geomet- ric positivity that manifests in cohomology rings associated to the flag variety G/B and, in some cases, to subvarieties of G/B. We offer an exposition on the the well-known geometric basis of the homology of G/B provided by Schubert varieties, whose dual basis in cohomology has nonnegative structure constants. In recent work [R. Goldin, L. Mihalcea, and R. Singh, Positivity of Peterson Schubert Calculus, arXiv2106.10372] we showed that the equivariant cohomology of Peterson varieties satisfies a positivity phenomenon similar to that for Schubert calculus for G/B. Here we explain how this positivity extends to this particular nilpotent Hessenberg variety, and offer some open questions about the ingredients for extending positivity results to other Hessenberg varieties. 
    more » « less
  2. We use the Springer correspondence to give a partial characterization of the irre- ducible representations which appear in the Tymoczko dot action of the Weyl group on the cohomology ring of a regular semisimple Hessenberg variety. In type A, we apply these techniques to prove that all irreducible summands which appear in the pushforward of the constant sheaf on the universal Hessenberg family have full support. We also observe that the recent results of Brosnan and Chow, which apply the local invariant cycle theorem to the family of regular Hessenberg varieties in type A, extend to arbitrary Lie type. We use this extension to prove that regular Hessenberg varieties, though not necessarily smooth, always have the “Kahler package.” 
    more » « less
  3. NA (Ed.)
    We give a Chevalley formula for an arbitrary weight for the torus-equivariant K-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small) torus-equivariant quantum K-theory QK_{T}(G/B) of a (finite-dimensional) flag manifold G/B; this has been a longstanding conjecture about the multiplicative structure of QK_{T}(G/B). In type A_{n-1}, we prove that the so-called quantum Grothendieck polynomials indeed represent (opposite) Schubert classes in the (non-equivariant) quantum K-theory QK(SL_{n}/B); we also obtain very explicit information about the coefficients in the respective Chevalley formula. 
    more » « less
  4. Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ⁢ ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ⁢ ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ⁢ ( a t ) - h D ⁢ ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ⁢ ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ⁢ ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ⁢ ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ ⁢ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number. 
    more » « less
  5. The Bollobás set pairs inequality is a fundamental result in extremal set theory with many applications. In this paper, for $$n \geqslant k \geqslant t \geqslant 2$$, we consider a collection of $$k$$ families $$\mathcal{A}_i: 1 \leq i \leqslant k$$ where $$\mathcal{A}_i = \{ A_{i,j} \subset [n] : j \in [n] \}$$ so that $$A_{1, i_1} \cap \cdots \cap A_{k,i_k} \neq \varnothing$$ if and only if there are at least $$t$$ distinct indices $$i_1,i_2,\dots,i_k$$. Via a natural connection to a hypergraph covering problem, we give bounds on the maximum size $$\beta_{k,t}(n)$$ of the families with ground set $[n]$. 
    more » « less