skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory
We give a Chevalley formula for an arbitrary weight for the torus-equivariant K-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small) torus-equivariant quantum K-theory QK_{T}(G/B) of a (finite-dimensional) flag manifold G/B; this has been a longstanding conjecture about the multiplicative structure of QK_{T}(G/B). In type A_{n-1}, we prove that the so-called quantum Grothendieck polynomials indeed represent (opposite) Schubert classes in the (non-equivariant) quantum K-theory QK(SL_{n}/B); we also obtain very explicit information about the coefficients in the respective Chevalley formula.  more » « less
Award ID(s):
1855592
PAR ID:
10562967
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Editor(s):
NA
Date Published:
Journal Name:
Selecta Mathematica
Edition / Version:
1
Volume:
30
Issue:
3
ISSN:
1022-1824
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    The quantum alcove model associated to a dominant weight plays an important role in many branches of mathematics, such as combinatorial representation theory, the theory of Macdonald polynomials, and Schubert calculus. For a dominant weight, it is proved by Lenart–Lubovsky that the quantum alcove model does not depend on the choice of a reduced alcove path, which is a shortest path of alcoves from the fundamental one to its translation by the given dominant weight. This is established through quantum Yang–Baxter moves, which biject the objects of the models associated to two such alcove paths, and can be viewed as a generalization of jeu de taquin slides to arbitrary root systems. The purpose of this paper is to give a generalization of quantum Yang–Baxter moves to the quantum alcove model corresponding to an arbitrary weight, which was used to express a general Chevalley formula for the equivariantK-group of semi-infinite flag manifolds. The generalized quantum Yang–Baxter moves give rise to a “sijection” (bijection between signed sets), and are shown to preserve certain important statistics, including weights and heights. As an application, we prove that the generating function of these statistics does not depend on the choice of a reduced alcove path. Also, we obtain an identity for the graded characters of Demazure submodules of level-zero extremal weight modules over a quantum affine algebra, which can be thought of as a representation-theoretic analogue of the mentioned Chevalley formula. 
    more » « less
  2. Karshon, Yael; Melrose, Richard; Uhlmann, Gunther; Uribe, Alejandro (Ed.)
    Hessenberg varieties H(X,H) form a class of subvarieties of the flag variety G/B, parameterized by an operator X and certain subspaces H of the Lie algebra of G. We identify several families of Hessenberg varieties in type A_{n−1} that are T -stable subvarieties of G/B, as well as families that are invariant under a subtorus K of T. In particular, these varieties are candidates for the use of equivariant methods to study their geometry. Indeed, we are able to show that some of these varieties are unions of Schubert varieties, while others cannot be such unions. Among the T-stable Hessenberg varieties, we identify several that are GKM spaces, meaning T acts with isolated fixed points and a finite number of one-dimensional orbits, though we also show that not all Hessenberg varieties with torus actions and finitely many fixed points are GKM. We conclude with a series of open questions about Hessenberg varieties, both in type A_{n−1} and in general Lie type. 
    more » « less
  3. A homology class [Formula: see text] of a complex flag variety [Formula: see text] is called a line degree if the moduli space [Formula: see text] of 0-pointed stable maps to X of degree d is also a flag variety [Formula: see text]. We prove a quantum equals classical formula stating that any n-pointed (equivariant, [Formula: see text]-theoretic, genus zero) Gromov–Witten invariant of line degree on X is equal to a classical intersection number computed on the flag variety [Formula: see text]. We also prove an n-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov–Witten invariants of the variety of complete flags [Formula: see text]. Our formulas make it straightforward to compute the big quantum [Formula: see text]-theory ring [Formula: see text] modulo the ideal [Formula: see text] generated by degrees d larger than line degrees. 
    more » « less
  4. Abstract The double Dyck path algebra$$\mathbb {A}_{q,t}$$ A q , t and its polynomial representation first arose as a key figure in the proof of the celebrated Shuffle Theorem of Carlsson and Mellit. A geometric formulation for an equivalent algebra$$\mathbb {B}_{q,t}$$ B q , t was then given by the second author and Carlsson and Mellit using the K-theory of parabolic flag Hilbert schemes. In this article, we initiate the systematic study of the representation theory of the double Dyck path algebra$$\mathbb {B}_{q,t}$$ B q , t . We define a natural extension of this algebra and study its calibrated representations. We show that the polynomial representation is calibrated, and place it into a large family of calibrated representations constructed from posets satisfying certain conditions. We also define tensor products and duals of these representations, thus proving (under suitable conditions) the category of calibrated representations is generically monoidal. As an application, we prove that tensor powers of the polynomial representation can be constructed from the equivariant K-theory of parabolic Gieseker moduli spaces. 
    more » « less
  5. Abstract. The Peterson variety is a subvariety of the flag manifold G/B equipped with an action of a one-dimensional torus, and a torus invariant paving by affine cells, called Peterson cells. We prove that the equivariant pull-backs of Schubert classes indexed by arbitrary Coxeter elements are dual (up to an intersection multiplicity) to the fundamental classes of Peterson cell closures. Dividing these classes by the intersec- tion multiplicities yields a Z-basis for the equivariant cohomology of the Peterson variety. We prove several properties of this basis, including a Graham positivity property for its structure constants, and stability with respect to inclusion in a larger Peterson variety. We also find for- mulae for intersection multiplicities with Peterson classes. This explains geometrically, in arbitrary Lie type, recent positivity statements proved in type A by Goldin and Gorbutt. 
    more » « less