PurposeTo assess RF‐induced heating hazards in 1.5T MR systems caused by body‐loop postures. MethodsTwelve advanced high‐resolution anatomically correct human body models with different body‐loop postures are created based on poseable human adult male models. Numerical simulations are performed to assess the radiofrequency (RF)‐induced heating of these 12 models at 11 landmarks. A customized phantom is developed to validate the numerical simulations and quantitatively analyze factors affecting the RF‐induced heating, eg, the contact area, the loop size, and the loading position. The RF‐induced heating inside three differently posed phantoms is measured. ResultsThe RF‐induced heating from the body‐loop postures can be up to 11 times higher than that from the original posture. The RF‐induced heating increases with increasing body‐loop size and decreasing contact area. The magnetic flux increases when the body‐loop center and the RF coil isocenter are close to each other, leading to increased RF‐induced heating. An air gap created in the body loop or generating a polarized magnetic field parallel to the body loop can reduce the heating by a factor of three at least. Experimental measurements are provided, validating the correctness of the numerical results. ConclusionSafe patient posture during MR examinations is recommended with the use of insulation materials to prevent loop formation and consequently avoiding high RF‐induced heating. If body loops cannot be avoided, the body loop should be placed outside the RF transmitting coil. In addition, linear polarization with magnetic fields parallel to the body loop can be used to circumvent high RF‐induced heating.
more »
« less
Computational methods for the estimation of ideal current patterns in realistic human models
Abstract PurposeTo introduce a method for the estimation of the ideal current patterns (ICP) that yield optimal signal‐to‐noise ratio (SNR) for realistic heterogeneous tissue models in MRI. Theory and MethodsThe ICP were calculated for different surfaces that resembled typical radiofrequency (RF) coil formers. We constructed numerical electromagnetic (EM) bases to accurately represent EM fields generated by RF current sources located on the current‐bearing surfaces. Using these fields as excitations, we solved the volume integral equation and computed the EM fields in the sample. The fields were appropriately weighted to calculate the optimal SNR and the corresponding ICP. We demonstrated how to qualitatively use ICP to guide the design of a coil array to maximize SNR inside a head model. ResultsIn agreement with previous analytic work, ICP formed large distributed loops for voxels in the middle of the sample and alternated between a single loop and a figure‐eight shape for a voxel 3‐cm deep in the sample's cortex. For the latter voxel, a surface quadrature loop array inspired by the shape of the ICP reached of the optimal SNR at 3T, whereas a single loop placed above the voxel reached only of the optimal SNR. At 7T, the performance of the two designs decreased to and , respectively, suggesting that loops could be suboptimal at ultra‐high field MRI. ConclusionICP can be calculated for human tissue models, potentially guiding the design of application‐specific RF coil arrays.
more »
« less
- Award ID(s):
- 2313156
- PAR ID:
- 10529351
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Magnetic Resonance in Medicine
- Volume:
- 91
- Issue:
- 2
- ISSN:
- 0740-3194
- Page Range / eLocation ID:
- 760 to 772
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract PurposeWe examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs. MethodsElectromagnetic (EM) models of 31‐channel and 63‐channel multichannel arrays built for 10.5 T were developed for 10.5 T and 7 T simulations. A 7 T version of the 63‐channel array with an identical coil layout was also built. Array performance was evaluated in the EM model using a phantom mimicking the size and electrical properties of the human head and a digital human head model. Experimental data was obtained at 7 T and 10.5 T with the 63‐channel array. Ultimate intrinsic SNR (uiSNR) was calculated for the two field strengths using a voxelized cloud of dipoles enclosing the phantom or the digital human head model as a reference to assess the performance of the two arrays and field depended SNR gains. ResultsuiSNR calculations in both the phantom and the digital human head model demonstrated SNR gains at 10.5 T relative to 7 T of 2.6 centrally, ˜2 at the location corresponding to the edge of the brain, ˜1.4 at the periphery. The EM models demonstrated that, centrally, both arrays captured ˜90% of the uiSNR at 7 T, but only ˜65% at 10.5 T, leading only to ˜2‐fold gain in array SNR in going from 7 to 10.5 T. This trend was also observed experimentally with the 63‐channel array capturing a larger fraction of the uiSNR at 7 T compared to 10.5 T, although the percentage of uiSNR captured were slightly lower at both field strengths compared to EM simulation results. ConclusionsMajor uiSNR gains are predicted for human head imaging in going from 7 T to 10.5 T, ranging from ˜2‐fold at locations corresponding to the edge of the brain to 2.6‐fold at the center, corresponding to approximately quadratic increase with the magnetic field. Realistic 31‐ and 63‐channel receive arrays, however, approach the central uiSNR at 7 T, but fail to do so at 10.5 T, suggesting that more coils and/or different type of coils will be needed at 10.5 T and higher magnetic fields.more » « less
-
PurposeBody composition MRI captures the distribution of fat and lean tissues throughout the body, and provides valuable biomarkers of obesity, metabolic disease, and muscle disorders, as well as risk assessment. Highly reproducible protocols have been developed for 1.5T and 3T MRI. The purpose of this work was to demonstrate the feasibility and test–retest repeatability of MRI body composition profiling on a 0.55T whole‐body system. MethodsHealthy adult volunteers were scanned on a whole‐body 0.55T MRI system using the integrated body RF coil. Experiments were performed to refine parameter settings such as TEs, resolution, flip angle, bandwidth, acceleration, and oversampling factors. The final protocol was evaluated using a test–retest study with subject removal and replacement in 10 adult volunteers (5 M/5F, age 25–60, body mass index 20–30). ResultsCompared to 1.5T and 3T, the optimal flip angle at 0.55T was higher (15°), due to the shorter T1 times, and the optimal echo spacing was larger, due to smaller chemical shift between water and fat. Overall image quality was comparable to conventional field strengths, with no significant issues with fat/water swapping or inadequate SNR. Repeatability coefficient of visceral fat, subcutaneous fat, total thigh muscle volume, muscle fat infiltration, and liver fat were 11.8 cL (2.2%), 46.9 cL (1.9%), 14.6 cL (0.5%), 0.1 pp (2%), and 0.2 pp (5%), respectively (coefficient of variation in parenthesis). ConclusionsWe demonstrate that 0.55T body composition MRI is feasible and present optimized scan parameters. The resulting images provide satisfactory quality for automated post‐processing and produce repeatable results.more » « less
-
Objective Speech production MRI benefits from lower magnetic fields due to reduced off-resonance effects at air-tissue interfaces and from the use of dedicated receiver coils due to higher SNR and parallel imaging capability. Here we present a custom designed upper airway coil for 1H imaging at 0.55 Tesla and evaluate its performance in comparison with a vendor-provided prototype 16-channel head/neck coil. Materials and methods Four adult volunteers were scanned with both custom speech and prototype head–neck coils. We evaluated SNR gains of each of the coils over eleven upper airway volumes-of-interest measured relative to the integrated body coil. We evaluated parallel imaging performance of both coils by computing g-factors for SENSE reconstruction of uniform and variable density Cartesian sampling schemes with R = 2, 3, and 4. Results The dedicated coil shows approximately 3.5-fold SNR efficiency compared to the head–neck coil. For R = 2 and 3, both uniform and variable density samplings have g-factor values below 1.1 in the upper airway region. For R = 4, g-factor values are higher for both trajectories. Discussion The dedicated coil configuration allows for a significant SNR gain over the head–neck coil in the articulators. This, along with favorable g values, makes the coil useful in speech production MRI.more » « less
-
Abstract PurposeRecent numerical and empirical results proved that high permittivity materials (HPM) used in pads placed near the subject or directly integrated with coils can increase the SNR and reduce the specific absorption rate (SAR) in MRI. In this paper, we propose an analytical investigation of the effect on the magnetic field distribution of a layer of HPM surrounding an anatomy‐mimicking cylindrical sample. MethodsThe study is based on a reformulation of the Mie scattering for cylindrical geometry, following an approach recently introduced for spherical samples. The total field in each medium is decomposed in terms of inward and outward electromagnetic waves, and the fields are expressed as series of cylindrical harmonics, whose coefficients can be interpreted as classical reflection and transmission coefficients. ResultsOur new formulation allows a quantitative evaluation of the effect of the HPM layer for varying permittivity and thickness, and it provides an intuitive understanding of such effect in terms of propagation and scattering of the RF field. ConclusionWe show how HPM can filter out the modes that only contribute to the noise or RF power deposition, resulting in higher SNR or lower SAR, respectively. Our proposed framework provides physical insight on how to properly design HPM for MRI applications.more » « less
An official website of the United States government

