skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Performance of receive head arrays versus ultimate intrinsic SNR at 7 T and 10.5 T
Abstract PurposeWe examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs. MethodsElectromagnetic (EM) models of 31‐channel and 63‐channel multichannel arrays built for 10.5 T were developed for 10.5 T and 7 T simulations. A 7 T version of the 63‐channel array with an identical coil layout was also built. Array performance was evaluated in the EM model using a phantom mimicking the size and electrical properties of the human head and a digital human head model. Experimental data was obtained at 7 T and 10.5 T with the 63‐channel array. Ultimate intrinsic SNR (uiSNR) was calculated for the two field strengths using a voxelized cloud of dipoles enclosing the phantom or the digital human head model as a reference to assess the performance of the two arrays and field depended SNR gains. ResultsuiSNR calculations in both the phantom and the digital human head model demonstrated SNR gains at 10.5 T relative to 7 T of 2.6 centrally, ˜2 at the location corresponding to the edge of the brain, ˜1.4 at the periphery. The EM models demonstrated that, centrally, both arrays captured ˜90% of the uiSNR at 7 T, but only ˜65% at 10.5 T, leading only to ˜2‐fold gain in array SNR in going from 7 to 10.5 T. This trend was also observed experimentally with the 63‐channel array capturing a larger fraction of the uiSNR at 7 T compared to 10.5 T, although the percentage of uiSNR captured were slightly lower at both field strengths compared to EM simulation results. ConclusionsMajor uiSNR gains are predicted for human head imaging in going from 7 T to 10.5 T, ranging from ˜2‐fold at locations corresponding to the edge of the brain to 2.6‐fold at the center, corresponding to approximately quadratic increase with the magnetic field. Realistic 31‐ and 63‐channel receive arrays, however, approach the central uiSNR at 7 T, but fail to do so at 10.5 T, suggesting that more coils and/or different type of coils will be needed at 10.5 T and higher magnetic fields.  more » « less
Award ID(s):
2313156
PAR ID:
10529353
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Magnetic Resonance in Medicine
Volume:
92
Issue:
3
ISSN:
0740-3194
Page Range / eLocation ID:
1219 to 1231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective Speech production MRI benefits from lower magnetic fields due to reduced off-resonance effects at air-tissue interfaces and from the use of dedicated receiver coils due to higher SNR and parallel imaging capability. Here we present a custom designed upper airway coil for 1H imaging at 0.55 Tesla and evaluate its performance in comparison with a vendor-provided prototype 16-channel head/neck coil. Materials and methods Four adult volunteers were scanned with both custom speech and prototype head–neck coils. We evaluated SNR gains of each of the coils over eleven upper airway volumes-of-interest measured relative to the integrated body coil. We evaluated parallel imaging performance of both coils by computing g-factors for SENSE reconstruction of uniform and variable density Cartesian sampling schemes with R = 2, 3, and 4. Results The dedicated coil shows approximately 3.5-fold SNR efficiency compared to the head–neck coil. For R = 2 and 3, both uniform and variable density samplings have g-factor values below 1.1 in the upper airway region. For R = 4, g-factor values are higher for both trajectories. Discussion The dedicated coil configuration allows for a significant SNR gain over the head–neck coil in the articulators. This, along with favorable g values, makes the coil useful in speech production MRI. 
    more » « less
  2. Abstract PurposeTo introduce a method for the estimation of the ideal current patterns (ICP) that yield optimal signal‐to‐noise ratio (SNR) for realistic heterogeneous tissue models in MRI. Theory and MethodsThe ICP were calculated for different surfaces that resembled typical radiofrequency (RF) coil formers. We constructed numerical electromagnetic (EM) bases to accurately represent EM fields generated by RF current sources located on the current‐bearing surfaces. Using these fields as excitations, we solved the volume integral equation and computed the EM fields in the sample. The fields were appropriately weighted to calculate the optimal SNR and the corresponding ICP. We demonstrated how to qualitatively use ICP to guide the design of a coil array to maximize SNR inside a head model. ResultsIn agreement with previous analytic work, ICP formed large distributed loops for voxels in the middle of the sample and alternated between a single loop and a figure‐eight shape for a voxel 3‐cm deep in the sample's cortex. For the latter voxel, a surface quadrature loop array inspired by the shape of the ICP reached of the optimal SNR at 3T, whereas a single loop placed above the voxel reached only of the optimal SNR. At 7T, the performance of the two designs decreased to and , respectively, suggesting that loops could be suboptimal at ultra‐high field MRI. ConclusionICP can be calculated for human tissue models, potentially guiding the design of application‐specific RF coil arrays. 
    more » « less
  3. Abstract Magnetic resonance elastography (MRE) is a non-invasive method for determining the mechanical response of tissues using applied harmonic deformation and motion-sensitive MRI. MRE studies of the human brain are typically performed at conventional field strengths, with a few attempts at the ultra-high field strength, 7T, reporting increased spatial resolution with partial brain coverage. Achieving high-resolution human brain scans using 7T MRE presents unique challenges of decreased octahedral shear strain-based signal-to-noise ratio (OSS-SNR) and lower shear wave motion sensitivity. In this study, we establish high resolution MRE at 7T with a custom 2D multi-slice single-shot spin-echo echo-planar imaging sequence, using the Gadgetron advanced image reconstruction framework, applying Marchenko–Pastur Principal component analysis denoising, and using nonlinear viscoelastic inversion. These techniques allowed us to calculate the viscoelastic properties of the whole human brain at 1.1 mm isotropic imaging resolution with high OSS-SNR and repeatability. Using phantom models and 7T MRE data of eighteen healthy volunteers, we demonstrate the robustness and accuracy of our method at high-resolution while quantifying the feasible tradeoff between resolution, OSS-SNR, and scan time. Using these post-processing techniques, we significantly increased OSS-SNR at 1.1 mm resolution with whole-brain coverage by approximately 4-fold and generated elastograms with high anatomical detail. Performing high-resolution MRE at 7T on the human brain can provide information on different substructures within brain tissue based on their mechanical properties, which can then be used to diagnose pathologies (e.g. Alzheimer’s disease), indicate disease progression, or better investigate neurodegeneration effects or other relevant brain disorders,in vivo. 
    more » « less
  4. In magnetic confinement fusion devices, the equilibrium configuration of a plasma is determined by the balance between the hydrostatic pressure in the fluid and the magnetic forces generated by an array of external coils and the plasma itself. The location of the plasma is not known a priori and must be obtained as the solution to a free boundary problem. The partial differential equation that determines the behavior of the combined magnetic field depends on a set of physical parameters (location of the coils, intensity of the electric currents going through them, magnetic permeability, etc.) that are subject to uncertainty and variability. The confinement region is in turn a function of these stochastic parameters as well. In this work, we consider variations on the current intensities running through the external coils as the dominant source of uncertainty. This leads to a parameter space of dimension equal to the number of coils in the reactor. With the aid of a surrogate function built on a sparse grid in parameter space, a Monte Carlo strategy is used to explore the effect that stochasticity in the parameters has on important features of the plasma boundary such as the location of the x-point, the strike points, and shaping attributes such as triangularity and elongation. The use of the surrogate function reduces the time required for the Monte Carlo simulations by factors that range between 7 and over 30. 
    more » « less
  5. Abstract PurposeRecent numerical and empirical results proved that high permittivity materials (HPM) used in pads placed near the subject or directly integrated with coils can increase the SNR and reduce the specific absorption rate (SAR) in MRI. In this paper, we propose an analytical investigation of the effect on the magnetic field distribution of a layer of HPM surrounding an anatomy‐mimicking cylindrical sample. MethodsThe study is based on a reformulation of the Mie scattering for cylindrical geometry, following an approach recently introduced for spherical samples. The total field in each medium is decomposed in terms of inward and outward electromagnetic waves, and the fields are expressed as series of cylindrical harmonics, whose coefficients can be interpreted as classical reflection and transmission coefficients. ResultsOur new formulation allows a quantitative evaluation of the effect of the HPM layer for varying permittivity and thickness, and it provides an intuitive understanding of such effect in terms of propagation and scattering of the RF field. ConclusionWe show how HPM can filter out the modes that only contribute to the noise or RF power deposition, resulting in higher SNR or lower SAR, respectively. Our proposed framework provides physical insight on how to properly design HPM for MRI applications. 
    more » « less