Abstract There is growing interest in floating offshore wind turbine (FOWT) technology, where turbines are installed on floating structures anchored to the seabed, allowing wind energy development in areas unsuitable for traditional fixed-platform turbines. Responsible development requires monitoring the impact of FOWTs on marine wildlife, such as whales, throughout the operational lifecycle of the turbines. Distributed acoustic sensing (DAS)—a technology that transforms fiber-optic cables into vibration sensor arrays—has been demonstrated for acoustic monitoring of whales using seafloor telecommunications cables. However, no studies have yet evaluated DAS performance in dynamic, engineered environments, such as floating platforms or moving vessels with complex, dynamic strain loads, despite their relevance to FOWT settings. This study addresses that gap by deploying DAS aboard a boat in Monterey Bay, California, where a fiber-optic cable was lowered using a weighted and suspended mooring line, enabling vertical deployment. Humpback whale vocalizations were captured and identified in the DAS data, noise sources were identified, and DAS data were compared to audio captured by a standalone hydrophone attached to the mooring line and a nearby hydrophone on a cabled observatory. This study is unique in: (1) deploying DAS in a vertical deployment mode, where noise from turbulence, cable vibrations, and other sources posed additional challenges compared to seafloor DAS applications; (2) demonstrating DAS in a dynamic, nonstationary setup, which is uncommon for DAS interrogators typically used in more stable environments; and (3) leveraging looped sections of the cable to reduce the noise floor and mitigate the effects of excessive cable vibrations and strain. This research demonstrates DAS’s ability to capture whale vocalizations in challenging environments, highlighting its potential to enhance underwater acoustic monitoring, particularly in the context of renewable energy development in offshore environments.
more »
« less
Monitoring underwater volcano degassing using fiber-optic sensing
Continuous monitoring of volcanic gas emissions is crucial for understanding volcanic activity and potential eruptions. However, emissions of volcanic gases underwater are infrequently studied or quantified. This study explores the potential of Distributed Acoustic Sensing (DAS) technology to monitor underwater volcanic degassing. DAS converts fiber-optic cables into high-resolution vibration recording arrays, providing measurements at unprecedented spatio-temporal resolution. We conducted an experiment at Laacher See volcano in Germany, immersing a fiber-optic cable in the lake and interrogating it with a DAS system. We detected and analyzed numerous acoustic signals that we associated with bubble emissions in different lake areas. Three types of text-book bubbles exhibiting characteristic waveforms are all found from our detections, indicating different nucleation processes and bubble sizes. Using clustering algorithms, we classified bubble events into four distinct clusters based on their temporal and spectral characteristics. The temporal distribution of the events provided insights into the evolution of gas seepage patterns. This technology has the potential to revolutionize underwater degassing monitoring and provide valuable information for studying volcanic processes and estimating gas emissions. Furthermore, DAS can be applied to other applications, such as monitoring underwater carbon capture and storage operations or methane leaks associated with climate change.
more »
« less
- Award ID(s):
- 2022716
- PAR ID:
- 10529516
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Scientific Reports (Sci Rep)
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Underwater Distributed Acoustic Sensing (DAS) utilizes optical fiber as a continuous sensor array. It enables high‐resolution data collection over long distances and holds promise to enhance tsunami early warning capabilities. This research focuses on detecting infragravity and tsunami waves associated with earthquakes and understanding their origin and dispersion characteristics through frequency‐wavenumber domain transformations and beamforming techniques. We propose a velocity correction method based on adjusting the apparent channel spacing according to water depth to overcome the challenge of detecting long‐wavelength and long‐period tsunami signals. Experimental results demonstrate the successful retrieval of infragravity and tsunami waves using a subsea optical fiber in offshore Oregon. These findings underscore the potential of DAS technology to complement existing infragravity waves detection systems, enhance preparedness, and improve response efforts in coastal communities. Further research and development in this field are crucial to fully utilize the capabilities of DAS for enhanced tsunami monitoring and warning systems.more » « less
-
The longwall mining method is designed to optimize coal extraction through controlled roof caving, which inevitably induces seismicity. This research employs a distributed acoustic sensing (DAS) system incorporating a fire-safe fiber-optic cable strategically installed underground within an operational longwall coal mine. Despite lower sensitivity than traditional seismometers, DAS sensing technology benefits from dense sensor spacing and close proximity to the active face, where many microseismic events occur. To automatically detect seismic events within the voluminous DAS data records, we employ convolutional autoencoder deep learning models that can be used for anomaly (potential seismic event) detection in power spectral density (PSD) images of DAS recordings. The kernel density estimation (KDE) technique is used to calculate the probability density function (PDF) for the density scores of the latent space (representation of compressed data). We then use this calculated parameter as a threshold to distinguish between the PSD associated with background noise and with potential seismic events. The DAS monitoring system in conjunction with the developed deep learning model could enhance longwall coal mining safety and efficiency by offering valuable data from its densely deployed multichannel sensors near mining operations.more » « less
-
Abstract Distributed acoustic sensing (DAS) on submarine fiber-optic cables is providing new observational insights into solid Earth processes and ocean dynamics. However, the availability of offshore dark fibers for long-term deployment remains limited. Simultaneous telecommunication and DAS operating at different wavelengths in the same fiber, termed optical multiplexing, offers one solution. In May 2024, we collected a four-day DAS dataset utilizing an L-band DAS interrogator and multiplexing on the submarine cables of the Ocean Observatory Initiative’s Regional Cabled Array offshore central Oregon. Our findings show that multiplexed DAS has no impact on communications and is unaffected by network traffic. Moreover, the quality of DAS data collected via multiplexing matches that of data obtained from dark fiber. With a machine-learning event detection workflow, we detect 31 T waves and the S wave of one regional earthquake, demonstrating the feasibility of continuous earthquake monitoring using the multiplexed offshore DAS. We also examine ocean waves and ocean-generated seismic noise. We note high-frequency seismic noise modulated by low-frequency ocean swell and hypothesize about its origins. The complete dataset is freely available.more » « less
-
Abstract The attenuation of ocean surface waves during seasonal ice cover is an important control on the evolution of Arctic coastlines. The spatial and temporal variations in this process have been challenging to resolve with conventional sampling using sparse arrays of moorings or buoys. We demonstrate a novel method for persistent observation of wave‐ice interactions using distributed acoustic sensing (DAS) along existing seafloor fiber optic telecommunications cables. DAS measurements span a 36‐km cross‐shore cable on the Beaufort Shelf from Oliktok Point, Alaska. DAS optical sensing of fiber strain‐rate provides a proxy for seafloor pressure, which we calibrate with wave buoy measurements during the ice‐free season (August 2022). We apply this calibration during the ice formation season (November 2021) to obtain unprecedented resolution of variable wave attenuation rates in new, partial ice cover. The location and strength of wave attenuation serve as proxies for ice coverage and thickness, especially during rapidly evolving events.more » « less