Abstract There is increasing interest from evolutionary biologists in the evolution of avian bill shape, how the bill is used during feeding and, in particular, the bite forces the bill can deliver. Bite force exhibits isometry with the total mass of the jaw musculature, but there is variation in the functional categories of the jaw muscles in different avian taxa. Qualitative descriptions of the jaw musculature do not allow analysis of the relative contributions that adductor or retractor muscles play in generating a bite force. This study is a meta-analysis of published data for body mass and the mass of the jaw musculature in 66 bird species from 10 orders. The masses of the different muscles contributing to adduction and retraction in closing the jaw, and to depression and protraction in opening the jaw, were summed and allometric relationships explored before investigating the effects of taxonomic order on these relationships. The categories of muscles, and the masses of each category of jaw musculature varied among avian orders. Some species, such as the flightless ratites, had relatively small jaw muscle mass but parrots had an additional adductor muscle. Phylogenetically controlled relationships between body mass and the mass of each muscle category irrespective of taxonomic order were isometric. However, analysis of covariance revealed significant interactions between body mass and taxonomic order. Most orders had low values for body-mass-specific muscle masses in the jaw with the notable exceptions of the Passeriformes (songbirds) and Psittaciformes (parrots). The values of these orders were 3–4 times greater, although the relative amounts of muscles contributing to adduction and retraction were similar in Psittaciformes, but adduction was markedly higher in Passeriformes. The results of these analyses highlight the lack of species-specific data for most birds, which is adversely impacting our understanding of the anatomical features that are determining the functional properties of the bill during feeding.
more »
« less
Ecological correlates of three‐dimensional muscle architecture within the dietarily diverse Strepsirrhini
Abstract Analysis of muscle architecture, traditionally conducted via gross dissection, has been used to evaluate adaptive relationships between anatomical form and behavioral function. However, gross dissection cannot preserve three‐dimensional relationships between myological structures for analysis. To analyze such data, we employ diffusible, iodine‐based contrast‐enhanced computed tomography (DiceCT) to explore the relationships between feeding ecology and masticatory muscle microanatomy in eight dietarily diverse strepsirrhines: allowing, for the first time, preservation of three‐dimensional fascicle orientation and tortuosity across a functional comparative sample. We find that fascicle properties derived from these digital analyses generally agree with those measured from gross‐dissected conspecifics. Physiological cross‐sectional area was greatest in species with mechanically challenging diets. Frugivorous taxa and the wood‐gouging species all exhibit long jaw adductor fascicles, while more folivorous species show the shortest relative jaw adductor fascicle lengths. Fascicle orientation in the parasagittal plane also seems to have a clear dietary association: most folivorous taxa have masseter and temporalis muscle vectors that intersect acutely while these vectors intersect obliquely in more frugivorous species. Finally, we observed notably greater magnitudes of fascicle tortuosity, as well as greater interspecific variation in tortuosity, within the jaw adductor musculature than in the jaw abductors. While the use of a single specimen per species precludes analysis of intraspecific variation, our data highlight the diversity of microanatomical variation that exists within the strepsirrhine feeding system and suggest that muscle architectural configurations are evolutionarily labile in response to dietary ecology—an observation to be explored across larger samples in the future.
more »
« less
- Award ID(s):
- 2314898
- PAR ID:
- 10529561
- Publisher / Repository:
- The Anatomical Record
- Date Published:
- Journal Name:
- The Anatomical Record
- Volume:
- 307
- Issue:
- 6
- ISSN:
- 1932-8486
- Page Range / eLocation ID:
- 1975 to 1994
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The evolution of complex dentitions in mammals was a major innovation that facilitated the expansion into new dietary niches, which imposed selection for tight form–function relationships. Teeth allow mammals to ingest and process food items by applying forces produced by a third-class lever system composed by the jaw adductors, the cranium, and the mandible. Physical laws determine changes in jaw adductor (biting) forces at different bite point locations along the mandible (outlever), thus, individual teeth are expected to experience different mechanical regimes during feeding. If the mammal dentition exhibits functional adaptations to mandible feeding biomechanics, then teeth are expected to have evolved to develop mechanically advantageous sizes, shapes, and positions. Here, we present bats as a model system to test this hypothesis and, more generally, for integrative studies of mammal dental diversity. We combine a field-collected dataset of bite forces along the tooth row with data on dental and mandible morphology across 30 bat species. We (1) describe, for the first time, bite force trends along the tooth row of bats; (2) use phylogenetic comparative methods to investigate relationships among bite force patterns, tooth, and mandible morphology; and (3) hypothesize how these biting mechanics patterns may relate to the developmental processes controlling tooth formation. We find that bite force variation along the tooth row is consistent with predictions from lever mechanics models, with most species having the greatest bite force at the first lower molar. The cross-sectional shape of the mandible body is strongly associated with the position of maximum bite force along the tooth row, likely reflecting mandibular adaptations to varying stress patterns among species. Further, dental dietary adaptations seem to be related to bite force variation along molariform teeth, with insectivorous species exhibiting greater bite force more anteriorly, narrower teeth and mandibles, and frugivores/omnivores showing greater bite force more posteriorly, wider teeth and mandibles. As these craniodental traits are linked through development, dietary specialization appears to have shaped intrinsic mechanisms controlling traits relevant to feeding performance.more » « less
-
ABSTRACT The jaw‐adductor muscles drive the movements and forces associated with primate feeding behaviors such as biting and chewing as well as social signaling behaviors such as wide‐mouth canine display. The past several decades have seen a rise in research aimed at the anatomy and physiology of primate chewing muscles to better understand the functional and evolutionary significance of the primate masticatory apparatus. This review summarizes variation in jaw‐adductor fiber types and muscle architecture in primates, focusing on physiological, architectural, and behavioral performance variables such as specific tension, fatigue resistance, muscle and bite force, and muscle stretch and gape.Paranthropus andAustralopithecusare used as one paleontological example to showcase the importance of these data for addressing paleobiological questions. The high degree of morphological variation related to sex, age, muscle, and species suggests future research should bracket ranges of performance variables rather than focus on single estimates of performance.more » « less
-
ABSTRACT Comparing patterns of performance and kinematics across behavior, development and phylogeny is crucial to understand the evolution of complex musculoskeletal systems such as the feeding apparatus. However, conveying 3D spatial data of muscle orientation throughout a feeding cycle, ontogenetic pathway or phylogenetic lineage is essential to understanding the function and evolution of the skull in vertebrates. Here, we detail the use of ternary plots for displaying and comparing the 3D orientation of muscle data. First, we illustrate changes in 3D jaw muscle resultants during jaw closing taxa the American alligator (Alligator mississippiensis). Second, we show changes in 3D muscle resultants of jaw muscles across an ontogenetic series of alligators. Third, we compare 3D resultants of jaw muscles of avian-line dinosaurs, including extant (Struthio camelus, Gallus gallus, Psittacus erithacus) and extinct (Tyrannosaurus rex) species to outline the reorganization of jaw muscles that occurred along the line to modern birds. Finally, we compare 3D resultants of jaw muscles of the hard-biting species in our sample (A. mississippiensis, T. rex, P. erithacus) to illustrate how disparate jaw muscle resultants are employed in convergent behaviors in archosaurs. Our findings show that these visualizations of 3D components of jaw muscles are immensely helpful towards identifying patterns of cranial performance, growth and diversity. These tools will prove useful for testing other hypotheses in functional morphology, comparative biomechanics, ecomorphology and organismal evolution.more » « less
-
Abstract ObjectivesAvailability of fruit is an important factor influencing variation in great ape foraging strategies and activity patterns. This study aims to quantify how frugivory influences activity budgets across age‐sex classes of mountain gorillas in Bwindi Impenetrable National Park, Uganda. Materials and methodsDaily proportions of fruit‐feeding and activity budgets were calculated using 6 years of observational data on four habituated groups. We fitted generalized linear mixed models to test for age‐sex differences in the amount of fruit‐feeding, and to test whether these factors influence the proportion of time spent feeding, resting, and traveling. ResultsBwindi mountain gorillas spent on average 15% of feeding time consuming fruit, with monthly variation ranging from 0 to 70%. Greater amounts of fruit‐feeding were associated with more time feeding and traveling, and less time resting. Immatures tended to spend more feeding time on fruit than adults, but less overall time feeding and more time traveling. There were no significant differences in the amount of fruit‐feeding and overall feeding time between adult females and silverback males, despite differences in body size. DiscussionThis study confirms that gorillas are frugivorous, and only the Virunga mountain gorilla population can be characterized as highly folivorous. Along with other frugivorous great apes, Bwindi mountain gorillas alter their activity patterns in response to varying amounts of fruit in their diet. A better understanding of how variable ecological conditions can drive diversity even within a subspecies has important implications for understanding relationships between ecology, body size, and foraging strategies in great apes.more » « less
An official website of the United States government

