The organization and length of a muscle's fascicles imparts its contractile properties. Longer fascicles permit increased muscle excursion, whereas changes in fascicle orientation relate to the overall vector of contractile force. Collecting data on fascicle architecture has traditionally involved destructive and irreversible gross dissection. In recent years, however, new imaging modalities have permitted muscles and their fascicles to be visualized nondestructively. Here, we present data from a primate (
This content will become publicly available on June 1, 2025
Analysis of muscle architecture, traditionally conducted via gross dissection, has been used to evaluate adaptive relationships between anatomical form and behavioral function. However, gross dissection cannot preserve three‐dimensional relationships between myological structures for analysis. To analyze such data, we employ diffusible, iodine‐based contrast‐enhanced computed tomography (DiceCT) to explore the relationships between feeding ecology and masticatory muscle microanatomy in eight dietarily diverse strepsirrhines: allowing, for the first time, preservation of three‐dimensional fascicle orientation and tortuosity across a functional comparative sample. We find that fascicle properties derived from these digital analyses generally agree with those measured from gross‐dissected conspecifics. Physiological cross‐sectional area was greatest in species with mechanically challenging diets. Frugivorous taxa and the wood‐gouging species all exhibit long jaw adductor fascicles, while more folivorous species show the shortest relative jaw adductor fascicle lengths. Fascicle orientation in the parasagittal plane also seems to have a clear dietary association: most folivorous taxa have masseter and temporalis muscle vectors that intersect acutely while these vectors intersect obliquely in more frugivorous species. Finally, we observed notably greater magnitudes of fascicle tortuosity, as well as greater interspecific variation in tortuosity, within the jaw adductor musculature than in the jaw abductors. While the use of a single specimen per species precludes analysis of intraspecific variation, our data highlight the diversity of microanatomical variation that exists within the strepsirrhine feeding system and suggest that muscle architectural configurations are evolutionarily labile in response to dietary ecology—an observation to be explored across larger samples in the future.
more » « less- Award ID(s):
- 2314898
- NSF-PAR ID:
- 10529561
- Publisher / Repository:
- The Anatomical Record
- Date Published:
- Journal Name:
- The Anatomical Record
- Volume:
- 307
- Issue:
- 6
- ISSN:
- 1932-8486
- Page Range / eLocation ID:
- 1975 to 1994
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Callithrix jacchus ), in which, for the first time, individual muscle fascicles are digitally “dissected” (segmented and reconstructed) using nondestructive, high‐resolution diffusible iodine‐based contrast‐enhanced computed tomography (DiceCT) techniques. We also present quantitative data on the length and orientation of these fascicles within 10 muscle divisions of the jaw adductor and abductor musculature (superficial, deep, and zygomatic portions of temporalis and masseter; medial and lateral pterygoid; anterior and posterior digastric) and compare these digitally measured lengths to fascicular lengths measured using traditional gross and chemical dissection. Digitally derived fascicle lengths correspond well to their dissection‐derived counterparts. Moreover, our analyses of changes in fascicle orientation across the adductor complex enable us to visualize previously uncharacterized levels of detail and highlight significant variation between adjacent muscle layers within muscle groups (e.g., between superficial, deep, and zygomatic portions of masseter and temporalis). We conclude that this technique offers great potential to future research, particularly for questions centered around the visualization and quantification of obscured and often‐overlooked muscles such as the pterygoid and digastric muscles, and for deriving more accurate models of the masticatory system as a whole. Anat Rec, 302:1891–1900, 2019. © 2019 American Association for Anatomy -
Abstract Carnivorans represent extreme ecomorphological diversity, encompassing remarkable variation in form, habitat, and diet. The relationship between the masticatory musculature and dietary ecology has been explored in a number of carnivoran lineages, including felids and the superfamily Musteloidea. In this study, we present novel architectural data on two additional carnivoran families—Ursidae and Canidae—and supplement these previous studies with additional felid, musteloid, herpestid, hyaenid, and viverrid taxa (a total of 53 species across 10 families). Gross dissection data were collected following a standardized protocol—sharp dissection followed by chemical digestion. Summed jaw adductor forces were also transformed into bite force estimates (BF) using osteologically calculated leverages. All data were linearized, log‐transformed, and size‐adjusted using two proxies for each taxon—body mass (BM) and cranial geometric mean—to assess relative scaling trends. These architectural data were then analyzed in the context of dietary ecology to examine the impact of dietary size (DS) and dietary mechanical properties (DMP). Muscle mass, physiological cross‐sectional area, and BF scaled with isometry or positive allometry in all cases, whereas fascicle lengths (FLs) scaled with isometry or negative allometry. With respect to diet, BM‐adjusted FLs were strongly correlated with DS in musteloids, but not in any other lineage. The relationship between size‐adjusted BF and DMP was also significant within musteloids, and across the sample as a whole, but not within other individual lineages. This interfamilial trend may reflect the increased morphological and dietary diversity of musteloids relative to other carnivoran groups.
-
Abstract There is increasing interest from evolutionary biologists in the evolution of avian bill shape, how the bill is used during feeding and, in particular, the bite forces the bill can deliver. Bite force exhibits isometry with the total mass of the jaw musculature, but there is variation in the functional categories of the jaw muscles in different avian taxa. Qualitative descriptions of the jaw musculature do not allow analysis of the relative contributions that adductor or retractor muscles play in generating a bite force. This study is a meta-analysis of published data for body mass and the mass of the jaw musculature in 66 bird species from 10 orders. The masses of the different muscles contributing to adduction and retraction in closing the jaw, and to depression and protraction in opening the jaw, were summed and allometric relationships explored before investigating the effects of taxonomic order on these relationships. The categories of muscles, and the masses of each category of jaw musculature varied among avian orders. Some species, such as the flightless ratites, had relatively small jaw muscle mass but parrots had an additional adductor muscle. Phylogenetically controlled relationships between body mass and the mass of each muscle category irrespective of taxonomic order were isometric. However, analysis of covariance revealed significant interactions between body mass and taxonomic order. Most orders had low values for body-mass-specific muscle masses in the jaw with the notable exceptions of the Passeriformes (songbirds) and Psittaciformes (parrots). The values of these orders were 3–4 times greater, although the relative amounts of muscles contributing to adduction and retraction were similar in Psittaciformes, but adduction was markedly higher in Passeriformes. The results of these analyses highlight the lack of species-specific data for most birds, which is adversely impacting our understanding of the anatomical features that are determining the functional properties of the bill during feeding.
-
Abstract While the
adductor musculature of the primate jaw has been extensively analyzed within the context of dietary and social ecology, little is known about the corresponding muscles of jawabduction . Nonetheless, these muscles significantly contribute to a species' maximum gape potential, and thus might constrain dietary niche diversity and impact social display behaviors. In this study, we quantify the architectural properties of the digastric (a jaw abductor) and lateral pterygoid (a jaw abductor and anterior translator) across a broad sample of male and female anthropoid primates. We test the hypothesis that the abductor musculature reflects specialization to dietary and behavioral ecology. Our sample comprises 14 catarrhine and 13 platyrrhine species spanning a wide range of dietary and social categories. All specimens were sharp dissected and muscles subsequently chemically digested using a standardized protocol. Our findings demonstrate that relative fascicle lengths within the lateral pterygoid (but not the digastric) are significantly greater within species that habitually consume larger food items. Meanwhile, canine length is more strongly associated with fascicle lengths in the digastric than in the lateral pterygoid, particularly within males. Neither dietary mechanical resistance nor the intensity of social competition relates to the size or architectural properties of the jaw abductors. These findings suggest that dietary—and to a lesser extent, socioecological—aspects of a primate's life history may be reflected in the architecture of these muscles, albeit to varying degrees. This underlines the importance of considering the complete masticatory apparatus when interpreting the evolution of the primate jaw. -
ABSTRACT Relative to all other primates, the aye‐aye (
Daubentonia madagascariensis ) exists at the extremes of both morphology and behavior. Its specialized anatomy—which includes hypselodont incisors and highly derived manual digits—reflects a dietary niche, unique among primates, which combines tap‐foraging with gouging to locate and extract wood‐boring larvae. Here, we explore the impact of this extreme dietary ecology upon the masticatory musculature of this taxon with reference to a second, similarly sized but highly generalist lemuriform—the mongoose lemur (Eulemur mongoz ). Using non‐destructive, high‐resolution diffusible iodine‐based contrast‐enhanced computed tomography techniques, we reconstruct the three‐dimensional volumes of eight masticatory muscles, and, for the first time in strepsirrhines, isolate and visualize their constituent muscle fasciclesin situ and in three dimensions. Using these data, we report muscle volumes, forces, and fascicle lengths from each muscle portion, as well as their orientation relative to two standardized anatomical planes. Our findings demonstrate the overbuilt nature of the aye‐aye's masticatory apparatus, in which each muscle possesses an absolutely and relatively larger muscle volume and PCSA than its counterpart in the mongoose lemur. Likewise, for several adductor muscles, aye‐ayes also possess relatively greater fascicle lengths. Finally, we note several unusual features within the lateral pterygoid of the aye‐aye—the muscle most responsible for jaw protrusion—that relate to force maximization and reorientation. As this jaw motion is critical to gouging, we interpret these differences to reflect highly specific specializations that facilitate the aye‐aye's extreme subsistence strategy. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:282–294, 2020. © 2019 American Association for Anatomy