skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Evolution of STAT2 resistance to flavivirus NS5 occurred multiple times despite genetic constraints
Abstract Zika and dengue virus nonstructural protein 5 antagonism of STAT2, a critical interferon signaling transcription factor, to suppress the host interferon response is required for viremia and pathogenesis in a vertebrate host. This affects viral species tropism, as mouse STAT2 resistance renders only immunocompromised or humanized STAT2 mice infectable. Here, we explore how STAT2 evolution impacts antagonism. By measuring the susceptibility of 38 diverse STAT2 proteins, we demonstrate that resistance arose numerous times in mammalian evolution. In four species, resistance requires distinct sets of multiple amino acid changes that often individually disrupt STAT2 signaling. This reflects an evolutionary ridge where progressive resistance is balanced by the need to maintain STAT2 function. Furthermore, resistance may come with a fitness cost, as resistance that arose early in lemur evolution was subsequently lost in some lemur lineages. These findings underscore that while it is possible to evolve resistance to antagonism, complex evolutionary trajectories are required to avoid detrimental host fitness consequences.  more » « less
Award ID(s):
2314898
PAR ID:
10529597
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High juvenile susceptibility drives infectious disease epidemics across kingdoms, yet the evolutionary mechanisms that maintain this susceptibility are unclear. We tested the hypothesis that juvenile susceptibility is maintained by high costs of resistance by quantifying the genetic correlation between host fitness and age-specific innate resistance to a fungal pathogen in a wild plant. We separately measured the resistance of 45 genetic families of the wild plant,Silene latifolia,to its endemic fungal pathogen,Microbotryum lychnidis-dioicae,at four ages in a controlled inoculation experiment. We then grew these same families in a field common garden and tracked survival and fecundity over a 2-y period and quantified the correlation between age-specific resistance and fitness in the field. We found significant fitness costs associated with disease resistance at juvenile but not at adult host stages. We then used an age-structured compartmental model to show that the magnitude of these costs is sufficient to prevent the evolution of higher juvenile resistance in models, allowing the disease to persist. Taken together, our results show that costs of resistance vary across host lifespan, providing an evolutionary explanation for the maintenance of juvenile susceptibility. 
    more » « less
  2. During the struggle for survival, populations occasionally evolve new functions that give them access to untapped ecological opportunities. Theory suggests that coevolution between species can promote the evolution of such innovations by deforming fitness landscapes in ways that open new adaptive pathways. We directly tested this idea by using high-throughput gene editing-phenotyping technology (MAGE-Seq) to measure the fitness landscape of a virus, bacteriophage λ, as it coevolved with its host, the bacterium Escherichia coli . An analysis of the empirical fitness landscape revealed mutation-by-mutation-by-host-genotype interactions that demonstrate coevolution modified the contours of λ’s landscape. Computer simulations of λ’s evolution on a static versus shifting fitness landscape showed that the changes in contours increased λ’s chances of evolving the ability to use a new host receptor. By coupling sequencing and pairwise competition experiments, we demonstrated that the first mutation λ evolved en route to the innovation would only evolve in the presence of the ancestral host, whereas later steps in λ’s evolution required the shift to a resistant host. When time-shift replays of the coevolution experiment were run where host evolution was artificially accelerated, λ did not innovate to use the new receptor. This study provides direct evidence for the role of coevolution in driving evolutionary novelty and provides a quantitative framework for predicting evolution in coevolving ecological communities. 
    more » « less
  3. Abstract BackgroundHybridization between evolutionary lineages has profound impacts on the fitness and ecology of hybrid progeny. In extreme cases, the effects of hybridization can transcend ecological timescales by introducing trait novelty upon which evolution can act. Indeed, hybridization can even have macroevolutionary consequences, for example, as a driver of adaptive radiations and evolutionary innovations. Accordingly, hybridization is now recognized as a motor for macrobial evolution. By contrast, there has been substantially less progress made towards understanding the positive eco-evolutionary consequences of hybridization on holobionts. Rather, the emerging paradigm in holobiont literature is that hybridization disrupts symbiosis between a host lineage and its microbiome, leaving hybrids at a fitness deficit. These conclusions, however, have been drawn based on results from predominantly low-fitness hybrid organisms. Studying “dead-end” hybrids all but guarantees finding that hybridization is detrimental. This is the pitfall that Dobzhansky fell into over 80 years ago when he used hybrid sterility and inviability to conclude that hybridization hinders evolution. Goldschmidt, however, argued that rare saltational successes—so-called hopeful monsters—disproportionately drive positive evolutionary outcomes. Goldschmidt’s view is now becoming a widely accepted explanation for the prevalence of historical hybridization in extant macrobial lineages. Aligning holobiont research with this broader evolutionary perspective requires recognizing the importance of similar patterns in host–microbiome systems. That is, rare and successful “hopeful holobionts” (i.e., hopeful monsters at the holobiont scale) might be disproportionately responsible for holobiont evolution. If true, then it is these successful systems that we should be studying to assess impacts of hybridization on the macroevolutionary trajectories of host–microbiome symbioses. ResultsIn this paper, we explore the effects of hybridization on the gut (cloacal) and skin microbiota in an ecologically successful hybrid lizard,Aspidoscelis neomexicanus. Specifically, we test the hypothesis that hybrid lizards have host-associated (HA) microbiota traits strongly differentiated from their progenitor species. Across numerous hybrid microbiota phenotypes, we find widespread evidence of transgressive segregation. Further, microbiota restructuring broadly correlates with niche restructuring during hybridization. This suggests a relationship between HA microbiota traits and ecological success. ConclusionTransgressive segregation of HA microbiota traits is not only limited to hybrids at a fitness deficit but also occurs in ecologically successful hybrids. This suggests that hybridization may be a mechanism for generating novel and potentially beneficial holobiont phenotypes. Supporting such a conclusion, the correlations that we find between hybrid microbiota and the hybrid niche indicate that hybridization might change host microbiota in ways that promote a shift or an expansion in host niche space. If true, hybrid microbiota restructuring may underly ecological release from progenitors. This, in turn, could drive evolutionary diversification. Using our system as an example, we elaborate on the evolutionary implications of host hybridization within the context of holobiont theory and then outline the next steps for understanding the role of hybridization in holobiont research. 
    more » « less
  4. null (Ed.)
    RNA viruses, such as influenza and Severe Acute Respiratory Syndrome (SARS), invoke excessive immune responses; however, the kinetics that regulate inflammatory responses within infected cells remain unresolved. Here, we develop a mathematical model of the RNA virus sensing pathways, to determine the intracellular events that primarily regulate interferon, an important protein for the activation and management of inflammation. Within the ordinary differential equation (ODE) model, we incorporate viral replication, cell death, interferon stimulated genes’ antagonistic effects on viral replication, and virus sensor protein (TLR and RIG-I) kinetics. The model is parameterized to influenza infection data using Markov chain Monte Carlo and then validated against infection data from an NS1 knockout strain of influenza, demonstrating that RIG-I antagonism significantly alters cytokine signaling trajectory. Global sensitivity analysis suggests that paracrine signaling is responsible for the majority of cytokine production, suggesting that rapid cytokine production may be best managed by influencing extracellular cytokine levels. As most of the model kinetics are host cell specific and not virus specific, the model presented provides an important step to modeling the intracellular immune dynamics of many RNA viruses, including the viruses responsible for SARS, Middle East Respiratory Syndrome (MERS), and Coronavirus Disease (COVID-19). 
    more » « less
  5. Abstract Selection that acts in a sex-specific manner causes the evolution of sexual dimorphism. Sex-specific phenotypic selection has been demonstrated in many taxa and can be in the same direction in the two sexes (differing only in magnitude), limited to one sex, or in opposing directions (antagonistic). Attempts to detect the signal of sex-specific selection from genomic data have confronted numerous difficulties. These challenges highlight the utility of “direct approaches,” in which fitness is predicted from individual genotype within each sex. Here, we directly measured selection on Single Nucleotide Polymorphisms (SNPs) in a natural population of the sexually dimorphic, dioecious plant, Silene latifolia. We measured flowering phenotypes, estimated fitness over one reproductive season, as well as survival to the next year, and genotyped all adults and a subset of their offspring for SNPs across the genome. We found that while phenotypic selection was congruent (fitness covaried similarly with flowering traits in both sexes), SNPs showed clear evidence for sex-specific selection. SNP-level selection was particularly strong in males and may involve an important gametic component (e.g., pollen competition). While the most significant SNPs under selection in males differed from those under selection in females, paternity selection showed a highly polygenic tradeoff with female survival. Alleles that increased male mating success tended to reduce female survival, indicating sexual antagonism at the genomic level. Perhaps most importantly, this experiment demonstrates that selection within natural populations can be strong enough to measure sex-specific fitness effects of individual loci. Males and females typically differ phenotypically, a phenomenon known as sexual dimorphism. These differences arise when selection on males differs from selection on females, either in magnitude or direction. Estimated relationships between traits and fitness indicate that sex-specific selection is widespread, occurring in both plants and animals, and explains why so many species exhibit sexual dimorphism. Finding the specific loci experiencing sex-specific selection is a challenging prospect but one worth undertaking given the extensive evolutionary consequences. Flowering plants with separate sexes are ideal organisms for such studies, given that the fitness of females can be estimated by counting the number of seeds they produce. Determination of fitness for males has been made easier as thousands of genetic markers can now be used to assign paternity to seeds. We undertook just such a study in S. latifolia, a short-lived, herbaceous plant. We identified loci under sex-specific selection in this species and found more loci affecting fitness in males than females. Importantly, loci with major effects on male fitness were distinct from the loci with major effects on females. We detected sexual antagonism only when considering the aggregate effect of many loci. Hence, even though males and females share the same genome, this does not necessarily impose a constraint on their independent evolution. 
    more » « less