Abstract A major challenge in evolutionary biology is explaining how populations navigate rugged fitness landscapes without getting trapped on local optima. One idea illustrated by adaptive dynamics theory is that as populations adapt, their newly enhanced capacities to exploit resources alter fitness payoffs and restructure the landscape in ways that promote speciation by opening new adaptive pathways. While there have been indirect tests of this theory, to our knowledge none have measured how fitness landscapes deform during adaptation, or test whether these shifts promote diversification. Here, we achieve this by studying bacteriophage$$\lambda$$ , a virus that readily speciates into co-existing receptor specialists under controlled laboratory conditions. We use a high-throughput gene editing-phenotyping technology to measure$$\lambda$$ ’s fitness landscape in the presence of different evolved-$$\lambda$$ competitors and find that the fitness effects of individual mutations, and their epistatic interactions, depend on the competitor. Using these empirical data, we simulate$$\lambda$$ ’s evolution on an unchanging landscape and one that recapitulates how the landscape deforms during evolution.$$\lambda$$ heterogeneity only evolves in the shifting landscape regime. This study provides a test of adaptive dynamics, and, more broadly, shows how fitness landscapes dynamically change during adaptation, potentiating phenomena like speciation by opening new adaptive pathways.
more »
« less
Host-parasite coevolution promotes innovation through deformations in fitness landscapes
During the struggle for survival, populations occasionally evolve new functions that give them access to untapped ecological opportunities. Theory suggests that coevolution between species can promote the evolution of such innovations by deforming fitness landscapes in ways that open new adaptive pathways. We directly tested this idea by using high-throughput gene editing-phenotyping technology (MAGE-Seq) to measure the fitness landscape of a virus, bacteriophage λ, as it coevolved with its host, the bacterium Escherichia coli . An analysis of the empirical fitness landscape revealed mutation-by-mutation-by-host-genotype interactions that demonstrate coevolution modified the contours of λ’s landscape. Computer simulations of λ’s evolution on a static versus shifting fitness landscape showed that the changes in contours increased λ’s chances of evolving the ability to use a new host receptor. By coupling sequencing and pairwise competition experiments, we demonstrated that the first mutation λ evolved en route to the innovation would only evolve in the presence of the ancestral host, whereas later steps in λ’s evolution required the shift to a resistant host. When time-shift replays of the coevolution experiment were run where host evolution was artificially accelerated, λ did not innovate to use the new receptor. This study provides direct evidence for the role of coevolution in driving evolutionary novelty and provides a quantitative framework for predicting evolution in coevolving ecological communities.
more »
« less
- Award ID(s):
- 1934515
- PAR ID:
- 10343852
- Date Published:
- Journal Name:
- eLife
- Volume:
- 11
- ISSN:
- 2050-084X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Li_Richter, Xiang-Yi; Mullon, Charles (Ed.)Abstract Given their ubiquity in nature and their importance to human and agricultural health, it is important to gain a better understanding of the drivers of the evolution of infectious disease. Across vertebrates, invertebrates, and plants, defence mechanisms can be expressed either constitutively (always present and costly) or induced (activated and potentially costly only upon infection). Theory has shown that this distinction has important implications to the evolution of defence due to differences in their impact on both individual fitness and the feedback of the population-level epidemiological outcomes such as prevalence. However, despite the fact that pathogens evolve in response to host immunity and that this can have important implications to the evolution of host defence, the implications of coevolution on constitutive and induced immunity have not been examined. Here we show theoretically how and when incorporating host-parasite coevolution between host defences and parasite growth strategies plays an important role in determining the optimum outcome. A key result is that whether the parasite affects host reproduction critically impacts host-parasite coevolution; when the parasite impacts fecundity, selection on the host is largely geared towards minimizing reproductive costs, through reducing investment in reproductively costly constitutive defence when the parasite prevalence is low, but also by investing in immunity to avoid infection or recover when prevalence is high. Our work emphasizes the importance of coevolution and epidemiological feedbacks to the coevolution of hosts and parasites and provides testable predictions of the determinants of constitutive verses induced defence.more » « less
-
null (Ed.)Abstract An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host–parasite coevolution.more » « less
-
Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator–host–parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy–Gyrodactylusspp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.more » « less
-
Abstract Bacteriophages, the most abundant and genetically diverse life forms, seemingly defy fundamental ecological theory by exhibiting greater diversity than their numerous bacterial prey. This paradox raises questions about the mechanisms underlying parasite diversity. To investigate this, we took advantage of a surprising experimental result: when bacteriophage λ is continually supplied a single host, λ repeatedly evolves multiple genotypes within the same flask that vary in their receptor use. Measurements of negative frequency-dependent selection between receptor specialists revealed that diversifying selection drove their evolution and maintenance. However, the source of environmental heterogeneity necessary to generate this type of selection was unclear, as only a single isogenic host was provided and replenished every eight hours. Our experiments showed that selection for different specialist phages oscillated over the 8-hour incubation period, mirroring oscillations in gene expression of λ’s two receptors (Escherichia coliouter membrane proteins LamB and OmpF). These receptor expression changes were attributed to both cell-to-cell variation in receptor expression and rapid bacterial evolution, which we documented using phenotypic resistance assays and population genome sequencing. Our findings suggest that cryptic phenotypic variation in hosts, arising from non-genetic phenotypic heterogeneity and rapid evolution, may play a key role in driving viral diversity.more » « less
An official website of the United States government

