In this paper, we introduce two new methods of mitigating decoder error propagation for low-latency sliding window decoding (SWD) of spatially coupled low-density parity-check (SC-LDPC) codes. Building on the recently introduced idea of check node (CN) doping of regular SC-LDPC codes, here we employ variable node (VN) doping to fix (set to a known value) a subset of variable nodes in the coupling chain. Both of these doping methods have the effect of allowing SWD to recover from error propagation, at a cost of a slight rate loss. Experimental results show that, similar to CN doping, VN doping improves performance by up to two orders of magnitude compared to un-doped SC-LDPC codes in the typical signal-to-noise ratio operating range. Further, compared to CN doping, VN doping has the advantage of not requiring any changes to the decoding process. In addition, a log-likelihood-ratio based window extension algorithm is proposed to reduce the effect of error propagation. Using this approach, we show that decoding latency can be reduced by up to a significant fraction without suffering any loss in performance.
more »
« less
A Low-Density Parity-Check Coding Scheme for LoRa Networking
This article presents a novel system,LLDPC,1which brings Low-Density Parity-Check (LDPC) codes into Long Range (LoRa) networks to improve Forward Error Correction, a task currently managed by less efficient Hamming codes. Three challenges in achieving this are addressed: First, Chirp Spread Spectrum (CSS) modulation used by LoRa produces only hard demodulation outcomes, whereas LDPC decoding requires Log-Likelihood Ratios (LLR) for each bit. We solve this by developing a CSS-specific LLR extractor. Second, we improve LDPC decoding efficiency by using symbol-level information to fine-tune LLRs of error-prone bits. Finally, to minimize the decoding latency caused by the computationally heavy Soft Belief Propagation (SBP) algorithm typically used in LDPC decoding, we apply graph neural networks to accelerate the process. Our results show thatLLDPCextends default LoRa’s lifetime by 86.7% and reduces SBP algorithm decoding latency by 58.09×.
more »
« less
- PAR ID:
- 10536199
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Sensor Networks
- Volume:
- 20
- Issue:
- 4
- ISSN:
- 1550-4859
- Page Range / eLocation ID:
- 1 to 29
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this paper, we introduce two new methods of mitigating decoder error propagation for low-latency sliding window decoding (SWD) of spatially coupled low density parity check (SC-LDPC) codes. Building on the recently introduced idea of check node (CN) doping of regular SC-LDPC codes, here we employ variable node (VN) doping to fix (set to a known value) a subset of variable nodes in the coupling chain. Both of these doping methods have the effect of allowing SWD to recover from error propagation, at a cost of a slight rate loss. Experimental results show that, similar to CN doping, VN doping improves performance by up to two orders of magnitude compared to undoped SC-LDPC codes in the typical signal-to-noise ratio operating range. Further, compared to CN doping, VN doping has the advantage of not requiring any changes to the decoding process.In addition, a log-likelihood-ratio based window extension algorithm is proposed to reduce the effect of error propagation. Using this approach, we show that decoding latency can be reduced by up to a significant fraction without suffering any loss in performancemore » « less
-
Abstract It is well known that some harmful objects in the Tanner graph of low-density parity-check (LDPC) codes have a negative impact on their error correction performance under iterative message-passing decoding. Depending on the channel and the decoding algorithm, these harmful objects are different in nature and can be stopping sets, trapping sets, absorbing sets, or pseudocodewords. Differently from LDPC block codes, the design of spatially coupled LDPC codes must take into account the semi-infinite nature of the code, while still reducing the number of harmful objects as much as possible. We propose a general procedure, based onedge spreading, enabling the design of good quasi-cyclic spatially coupled LDPC (QC-SC-LDPC) codes. These codes are derived from quasi-cyclic LDPC (QC-LDPC) block codes and contain a considerably reduced number of harmful objects with respect to the original QC-LDPC block codes. We use an efficient way of enumerating harmful objects in QC-SC-LDPCCs to obtain a fast algorithm that spans the search space of potential candidates to select those minimizing the multiplicity of the target harmful objects. We validate the effectiveness of our method via numerical simulations, showing that the newly designed codes achieve better error rate performance than codes presented in previous literature.more » « less
-
Error correction coding schemes with local-global decoding are motivated by practical data storage applications where a balance must be achieved between low latency read access and high data reliability. As an example, consider a 4KB codeword, consisting of four 1KB subblocks, that supports a local-global decoding architecture. Local decoding can provide reliable, low-latency access to individual 1KB subblocks under good channel conditions, while global decoding can provide a “safety-net” for recovery of the entire 4KB block when local decoding fails under bad channel conditions. Recently, Ram and Cassuto have proposed such local-global decoding architectures for LDPC codes and spatially coupled LDPC codes. In this paper, we investigate a coupled polar code architecture that supports both local and global decoding. The coupling scheme incorporates a systematic outer polar code and a partitioned mapping of the outer codeword to semipolarized bit-channels of the inner polar codes. Error rate simulation results are presented for 2 and 4 subblocks.more » « less
-
In this paper, we analyze applicability of singleand two-hidden-layer feed-forward artificial neural networks, SLFNs and TLFNs, respectively, in decoding linear block codes. Based on the provable capability of SLFNs and TLFNs to approximate discrete functions, we discuss sizes of the network capable to perform maximum likelihood decoding. Furthermore, we propose a decoding scheme, which use artificial neural networks (ANNs) to lower the error-floors of low-density parity-check (LDPC) codes. By learning a small number of error patterns, uncorrectable with typical decoders of LDPC codes, ANN can lower the error-floor by an order of magnitude, with only marginal average complexity incense.more » « less
An official website of the United States government

