skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizers of three-point energies and nearly orthogonal sets
This paper is devoted to spherical measures and point configurations optimizing three-point energies. Our main goal is to extend the classic optimization problems based on pairs of distances between points to the context of three-point potentials. In particular, we study three-point analogues of the sphere packing problem and the optimization problem for p p -frame energies based on three points. It turns out that both problems are inherently connected to the problem of nearly orthogonal sets by Erdős. As the outcome, we provide a new solution of the Erdős problem from the three-point packing perspective. We also show that the orthogonal basis uniquely minimizes the p p -frame three-point energy when 0 > p > 1 0>p>1 in all dimensions. The arguments make use of multivariate polynomials employed in semidefinite programming and based on the classical Gegenbauer polynomials. For p = 1 p=1 , we completely solve the analogous problem on the circle. As for higher dimensions, we show that the Hausdorff dimension of minimizers is not greater than d −<#comment/> 2 d-2 for measures on S d −<#comment/> 1 \mathbb {S}^{d-1} more » « less
Award ID(s):
2054536 2054606 2202877
PAR ID:
10529854
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study regularity of solutions u u to ∂<#comment/> ¯<#comment/> u = f \overline \partial u=f on a relatively compact C 2 C^2 domain D D in a complex manifold of dimension n n , where f f is a ( 0 , q ) (0,q) form. Assume that there are either ( q + 1 ) (q+1) negative or ( n −<#comment/> q ) (n-q) positive Levi eigenvalues at each point of boundary ∂<#comment/> D \partial D . Under the necessary condition that a locally L 2 L^2 solution exists on the domain, we show the existence of the solutions on the closure of the domain that gain 1 / 2 1/2 derivative when q = 1 q=1 and f f is in the Hölder–Zygmund space Λ<#comment/> r ( D ) \Lambda ^r( D) with r > 1 r>1 . For q > 1 q>1 , the same regularity for the solutions is achieved when ∂<#comment/> D \partial D is either sufficiently smooth or of ( n −<#comment/> q ) (n-q) positive Levi eigenvalues everywhere on ∂<#comment/> D \partial D
    more » « less
  2. Motivated by recent work on optimal approximation by polynomials in the unit disk, we consider the following noncommutative approximation problem: for a polynomial f f in d d freely noncommuting arguments, find a free polynomial p n p_n , of degree at most n n , to minimize c n ‖<#comment/> p n f −<#comment/> 1 ‖<#comment/> 2 c_n ≔\|p_nf-1\|^2 . (Here the norm is the ℓ<#comment/> 2 \ell ^2 norm on coefficients.) We show that c n →<#comment/> 0 c_n\to 0 if and only if f f is nonsingular in a certain nc domain (the row ball), and prove quantitative bounds. As an application, we obtain a new proof of the characterization of polynomials cyclic for the d d -shift. 
    more » « less
  3. Motivated by questions asked by Erdős, we prove that any set A ⊂<#comment/> N A\subset \mathbb {N} with positive upper density contains, for any k ∈<#comment/> N k\in \mathbb {N} , a sumset B 1 + ⋯<#comment/> + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂<#comment/> N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of k = 2 k=2
    more » « less
  4. Let f f be analytic on [ 0 , 1 ] [0,1] with | f ( k ) ( 1 / 2 ) | ⩽<#comment/> A α<#comment/> k k ! |f^{(k)}(1/2)|\leqslant A\alpha ^kk! for some constants A A and α<#comment/> > 2 \alpha >2 and all k ⩾<#comment/> 1 k\geqslant 1 . We show that the median estimate of μ<#comment/> = ∫<#comment/> 0 1 f ( x ) d x \mu =\int _0^1f(x)\,\mathrm {d} x under random linear scrambling with n = 2 m n=2^m points converges at the rate O ( n −<#comment/> c log ⁡<#comment/> ( n ) ) O(n^{-c\log (n)}) for any c > 3 log ⁡<#comment/> ( 2 ) / π<#comment/> 2 ≈<#comment/> 0.21 c> 3\log (2)/\pi ^2\approx 0.21 . We also get a super-polynomial convergence rate for the sample median of 2 k −<#comment/> 1 2k-1 random linearly scrambled estimates, when k / m k/m is bounded away from zero. When f f has a p p ’th derivative that satisfies a λ<#comment/> \lambda -Hölder condition then the median of means has error O ( n −<#comment/> ( p + λ<#comment/> ) + ϵ<#comment/> ) O( n^{-(p+\lambda )+\epsilon }) for any ϵ<#comment/> > 0 \epsilon >0 , if k →<#comment/> ∞<#comment/> k\to \infty as m →<#comment/> ∞<#comment/> m\to \infty . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number. 
    more » « less
  5. We show that for primes N , p ≥<#comment/> 5 N, p \geq 5 with N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , the class number of Q ( N 1 / p ) \mathbb {Q}(N^{1/p}) is divisible by p p . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , there is always a cusp form of weight 2 2 and level Γ<#comment/> 0 ( N 2 ) \Gamma _0(N^2) whose ℓ<#comment/> \ell th Fourier coefficient is congruent to ℓ<#comment/> + 1 \ell + 1 modulo a prime above p p , for all primes ℓ<#comment/> \ell . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- p p extension of Q ( N 1 / p ) \mathbb {Q}(N^{1/p})
    more » « less