A<sc>bstract</sc> We study the azimuthal angular decorrelations of dijet production in both proton-proton (pp) and proton-nucleus (pA) collisions. By utilizing soft-collinear effective theory, we establish the factorization and resummation formalism at the next-to-leading logarithmic accuracy for the azimuthal angular decorrelations in the back-to-back limit in pp collisions. We propose an approach where the nuclear modifications to dijet production in pA collisions are accounted for in the nuclear modified transverse momentum dependent parton distribution functions (nTMDPDFs), which contain both collinear and transverse dynamics. This approach naturally generalizes the well-established formalism related to the nuclear modified collinear parton distribution functions (nPDFs). We demonstrate strong consistency between our methodology and the CMS measurements in both pp and pA collisions, and make predictions for dijet production in the forward rapidity region in pA collisions at LHC kinematics and for mid-rapidity kinematics at sPHENIX. Throughout this paper, we focus on the application of this formalism to a simultaneous fit to both collinear and transverse momentum dependent contributions to the transverse momentum dependent distributions.
more »
« less
Incoherent diffractive dijet production and gluon Bose enhancement in the nuclear wave function
A<sc>bstract</sc> We investigate the effect of gluon Bose enhancement in the nuclear wave function on the dijet production in incoherent diffractive processes in DIS and ultraperipheral collisions. We demonstrate that Bose enhancement leads to an enhancement of diffractive dijet production cross section when the transverse momenta of the two jets are aligned at zero relative angle. This enhancement is maximal when the magnitude of the transverse momenta of the two jets are equal, and disappears rather quickly as a function of the ratio of the two momenta. We study both the dilute limit and fully nonlinear dense regime where the nuclear wave function is evolved with the leading order JIMWLK equation. In both cases we observe a visible effect, with it being enhanced by the evolution due to the dynamical generation of the color neutralization scale.
more »
« less
- Award ID(s):
- 2208387
- PAR ID:
- 10529874
- Publisher / Repository:
- Journal of High Energy Physics
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 7
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Multijet events at large transverse momentum ( $$p_{\textrm{T}}$$ p T ) are measured at $$\sqrt{s}=13\,\text {TeV} $$ s = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of $$36.3{\,\text {fb}^{-1}} $$ 36.3 fb - 1 . The multiplicity of jets with $$p_{\textrm{T}} >50\,\text {GeV} $$ p T > 50 GeV that are produced in association with a high- $$p_{\textrm{T}}$$ p T dijet system is measured in various ranges of the $$p_{\textrm{T}}$$ p T of the jet with the highest transverse momentum and as a function of the azimuthal angle difference $$\varDelta \phi _{1,2}$$ Δ ϕ 1 , 2 between the two highest $$p_{\textrm{T}}$$ p T jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest $$p_{\textrm{T}}$$ p T jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower.more » « less
-
A bstract The cross sections for inclusive and Mueller-Navelet dijet production are measured as a function of the rapidity separation between the jets in proton-proton collisions at $$ \sqrt{s} $$ s = 2 . 76 TeV for jets with transverse momentum p T > 35 GeV and rapidity | y | < 4 . 7. Various dijet production cross section ratios are also measured. A veto on additional jets with p T > 20 GeV is introduced to improve the sensitivity to the effects of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution. The measurement is compared with the predictions of various Monte Carlo models based on leading-order and next-to-leading-order calculations including the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi leading-logarithm (LL) parton shower as well as the LL BFKL resummation.more » « less
-
A bstract Measurements of jet substructure describing the composition of quark- and gluon-initiated jets are presented. Proton-proton (pp) collision data at $$ \sqrt{s} $$ s = 13 TeV collected with the CMS detector are used, corresponding to an integrated luminosity of 35.9 fb − 1 . Generalized angularities are measured that characterize the jet substructure and distinguish quark- and gluon-initiated jets. These observables are sensitive to the distributions of transverse momenta and angular distances within a jet. The analysis is performed using a data sample of dijet events enriched in gluon-initiated jets, and, for the first time, a Z+jet event sample enriched in quark-initiated jets. The observables are measured in bins of jet transverse momentum, and as a function of the jet radius parameter. Each measurement is repeated applying a “soft drop” grooming procedure that removes soft and large angle radiation from the jet. Using these measurements, the ability of various models to describe jet substructure is assessed, showing a clear need for improvements in Monte Carlo generators.more » « less
-
This paper describes a measurement of the jet radius dependence of the dijet momentum balance between leading back-to-back jets in of collisions collected in 2018 and of collisions collected in 2017 by the ATLAS detector at the LHC. Both datasets were collected at TeV. Jets are reconstructed using the anti- algorithm with jet radius parameters , 0.3, 0.4, 0.5, and 0.6. The dijet momentum balance distributions are constructed for leading jets with transverse momentum from 100 to 562 GeV for , 0.3, and 0.4 jets, and from 158 to 562 GeV for and 0.6 jets. The absolutely normalized dijet momentum balance distributions are constructed to compare measurements of the dijet yields in collisions directly to the dijet cross sections in collisions. For all jet radii considered here, there is a suppression of more balanced dijets in collisions compared with collisions, while for more imbalanced dijets there is an enhancement. There is a jet radius dependence to the dijet yields, being stronger for more imbalanced dijets than for more balanced dijets. Additionally, jet pair nuclear modification factors are measured. The subleading jet yields are found to be more suppressed than leading jet yields in dijets. A jet radius dependence of the pair nuclear modification factors is observed, with the suppression decreasing with increasing jet radius. These measurements provide new constraints on jet quenching scenarios in the quark-gluon plasma. ©2024 CERN, for the ATLAS Collaboration2024CERNmore » « less
An official website of the United States government

