skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region
The Antarctic Peninsula is one of the three fastest warming regions on Earth. Here we review Holocene proxy records of marine and terrestrial palaeoclimate in the region, and discuss possible forcing mechanisms underlying past change, with a specific focus on past warm periods. Our aim is to critically evaluate the mechanisms by which palaeoclimate changes might have occurred, in order to provide a longer-term context for assessing the drivers of recent warming. Two warm events are well recorded in the Holocene palaeoclimate record, namely the early Holocene warm period, and the `Mid Holocene Hypsithermal' (MHH), whereas there are fewer proxy data for the `Mediaeval Warm Period' (MWP) and the `Recent Rapid Regional' (RRR) warming. We show that the early Holocene warm period and MHH might be explained by relatively abrupt shifts in position of the Southern Westerlies, superimposed on slower solar insolation changes. A key finding of our synthesis is that the marine and terrestrial records in the AP appear to show markedly different behaviour during the MHH. This might be partly explained by contrasts in the seasonal insolation forcing between these records. Circumpolar Deep Water (CDW) has been implicated in several of the prominent changes through the Holocene but there are still differences in interpretation of the proxy record that make its influence difficult to assess. Further work is required to investigate contrasts between marine and terrestrial proxy records, east—west contrasts in palaeoclimate, the history of CDW, to retrieve a long onshore high resolution record of the Holocene, and determine the role of sea ice in driving or modulating palaeoclimate change, along with further efforts to study the proxy record of the RRR and the MWP.  more » « less
Award ID(s):
0732605 0338109
PAR ID:
10530127
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
The Holocene
Volume:
19
Issue:
1
ISSN:
0959-6836
Page Range / eLocation ID:
51 to 69
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tropical rainfall variability is closely linked to meridional shifts of the Intertropical Convergence Zone (ITCZ) and zonal movements of the Walker circulation. The characteristics and mechanisms of tropical rainfall variations on centennial to decadal scales are, however, still unclear. Here, we reconstruct a replicated stalagmite-based 2,700-y-long, continuous record of rainfall for the deeply convective northern central Indo-Pacific (NCIP) region. Our record reveals decreasing rainfall in the NCIP over the past 2,700 y, similar to other records from the northern tropics. Notable centennial- to decadal-scale dry climate episodes occurred in both the NCIP and the southern central Indo-Pacific (SCIP) during the 20th century [Current Warm Period (CWP)] and the Medieval Warm Period (MWP), resembling enhanced El Niñ o -like conditions. Further, we developed a 2,000-y-long ITCZ shift index record that supports an overall southward ITCZ shift in the central Indo-Pacific and indicates southward mean ITCZ positions during the early MWP and the CWP. As a result, the drying trend since the 20 th century in the northern tropics is similar to that observed during the past warm period, suggesting that a possible anthropogenic forcing of rainfall remains indistinguishable from natural variability. 
    more » « less
  2. Dynamics driving the El Niño–Southern Oscillation (ENSO) over longer-than-interannual time scales are poorly understood. Here, we compile thermocline temperature records of the Indo-Pacific warm pool over the past 25,000 years, which reveal a major warming in the Early Holocene and a secondary warming in the Middle Holocene. We suggest that the first thermocline warming corresponds to heat transport of southern Pacific shallow overturning circulation driven by June (austral winter) insolation maximum. The second thermocline warming follows equatorial September insolation maximum, which may have caused a steeper west-east upper-ocean thermal gradient and an intensified Walker circulation in the equatorial Pacific. We propose that the warm pool thermocline warming ultimately reduced the interannual ENSO activity in the Early to Middle Holocene. Thus, a substantially increased oceanic heat content of the warm pool, acting as a negative feedback for ENSO in the past, may play its role in the ongoing global warming. 
    more » « less
  3. Abstract Substantial changes in terrestrial hydroclimate during the Holocene are recorded in geological archives and simulated by computer models. To identify spatial and temporal patterns during the past 12 ka, proxy records sensitive to changing precipitation and effective moisture (precipitation minus evaporation) were compiled from across the globe (n = 813). Proxy composite timeseries were computed for 30 of the IPCC AR6 regions and compared to two full‐Holocene transient model simulations (TraCE‐21ka and HadCM3) and twelve mid‐Holocene CMIP6 simulations. We find that throughout Northern Hemisphere monsoon regions, proxy and model simulations indicate wetter‐than‐modern conditions during the early and mid‐Holocene while Southern Hemisphere monsoon regions were drier. This insolation driven trend toward modern values began approximately 6,000 years ago, and the clear agreement among proxy records and models may reflect the large magnitude of precipitation change and consistent atmospheric circulation forcing mechanism for these regions. In the midlatitudes, the pattern of change is less certain. Generally, proxy composites show a wetting trend throughout the Holocene for the northern midlatitudes, possibly due to strengthening westerlies from an increasing latitudinal temperature gradient. However, simulations indicate that the magnitude of change was relatively low, and for portions of North America, there is a proxy‐model disagreement. At high latitudes, hydroclimate is positively correlated with temperature in both proxies and models, consistent with projected wetting as temperatures rise. Overall, this large proxy database reveals a coherent pattern of hydroclimate variability despite the challenges associated with reconstructing hydroclimate fields. 
    more » « less
  4. Abstract The tropics exert enormous influence on global climate. Despite the importance of tropical regions, the terrestrial temperature history in the Indo‐Pacific Warm Pool (IPWP) region during the last deglaciation is poorly constrained. Although numerous sea surface temperature (SST) reconstructions provide estimates of SST warming from the Last Glacial Maximum to the Holocene, the timing of the onset of deglacial warming varies between records and inhibits determining the forcings driving deglacial warming in the IPWP. We present a 60,000‐year long temperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a sediment core from Lake Towuti, located in Sulawesi, Indonesia. BrGDGTs are bacterial membrane‐spanning lipids that, globally, become more methylated with decreasing temperature and more cyclized with decreasing pH. Although changes in temperature are the dominant control on brGDGTs in regional and global calibrations, we find that the cyclization of the brGDGTs is a major mode of variation at Lake Towuti that records important changes in the lacustrine biogeochemical environment. We separate the influence of lake chemistry changes from temperature changes on the brGDGT records, and develop a temperature record spanning the last 60,000 years. The timing of the deglacial warming in our record occurs after the onset of the deglacial increase in CO2concentrations, which suggests rising greenhouse gas concentrations and the associated radiative forcing may have forced deglacial warming in the IPWP. Peaks in temperature around 55 and 34 ka indicate that Northern Hemisphere summer insolation may also influence land surface temperature in the IPWP region. 
    more » « less
  5. Global warming during the Last Glacial Termination was interrupted by millennial-scale cool intervals such as the Younger Dryas and the Antarctic Cold Reversal (ACR). Although these events are well characterized at high latitudes, their impacts at low latitudes are less well known. We present high-resolution temperature and hydroclimate records from the tropical Andes spanning the past ~16,800 y using organic geochemical proxies applied to a sediment core from Laguna Llaviucu, Ecuador. Our hydroclimate record aligns with records from the western Amazon and eastern and central Andes and indicates a dominant long-term influence of changing austral summer insolation on the intensity of the South American Summer Monsoon. Our temperature record indicates a ~4 °C warming during the glacial termination, stable temperatures in the early to mid-Holocene, and slight, gradual warming since ~6,000 y ago. Importantly, we observe a ~1.5 °C cold reversal coincident with the ACR. These data document a temperature change pattern during the deglaciation in the tropical Andes that resembles temperatures at high southern latitudes, which are thought to be controlled by radiative forcing from atmospheric greenhouse gases and changes in ocean heat transport by the Atlantic meridional overturning circulation. 
    more » « less