skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning computational thinking through embodied experience: a proposal of a framework
This study is implemented with a focus of discovering how students use the practice of embodied learning to gain knowledge of computational thinking (CT). An intervention was executed at an elementary school in a midwestern state, where students used a marker free virtual reality system to engage in a task that requires them to use the CT concepts and skills. Students participated in the path finding activity within the AR system, and demonstrated accounts of how they use their body to express their understanding of abstract CT concepts. Moreover, the affordances of the AR system were integrated to the student’s learning experience, furthering the discussion of how student’s embodied movement within the virtual world influences their learning outcomes of CT concepts. As an attempt to analyze the embodied learning experience of abstract notions, the researchers developed a coding framework that introduces the mapping of abstract CT concepts and the tangible embodied action that reflects each concept. This short paper thus presents the framework for embodied computational thinking skills, and further elaborates on the future implications of the on-going work.  more » « less
Award ID(s):
2048989
PAR ID:
10530135
Author(s) / Creator(s):
;
Editor(s):
Cohen, J; Solano, G
Publisher / Repository:
Association for the Advancement of Computing in Education (AACE)
Date Published:
ISBN:
978-1-939797-76-6
Page Range / eLocation ID:
353-359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Blankenship, R J; Cherner, T (Ed.)
    This study investigates the effects of embodied learning experiences in learning abstract concepts, such as computational thinking (CT), among young learners. Specifically, it examines whether the benefits of embodied learning can be replicated within a mixed-reality setting, where students engage with virtual objects to perform CT tasks. A group of 10 first-grade students from an elementary school participated, engaging in embodied learning activities followed by assessments in CT. Through the analysis of video recordings, it was observed that participants could effectively articulate CT concepts, including the understanding of programming code meanings and their sequences, through their bodily movements. The congruence between students’ bodily movement and CT concepts was advantageous for their comprehension. However, the study also noted incongruent movements that did not align with the intended CT concepts, which attracted researchers’ attention. The study identified two distinct types of embodiments manifested in the mixed-reality environment, which shed light on the nuanced dynamics of embodied learning in CT education. 
    more » « less
  2. This study examined the effects of embodied learning experiences on students’ understanding of computational thinking (CT) concepts and their ability to solve CT problems. In a mixed-reality learning environment, students mapped CT concepts, such as sequencing and loops, onto their bodily movements. These movements were later applied to robot programming tasks, where students used the same CT concepts in a different modality. By explicitly connecting embodied actions with programming tasks, the intervention aimed to enhance students’ comprehension and transfer of CT skills. Forty-four first- and second-grade students participated in the study. The results showed significant improvements in students’ CT competency and positive attitudes toward CT. Additionally, an analysis of robot programming performance identified common errors and revealed how students employed embodied strategies to overcome challenges. The effects of embodied learning and the impact of embodied learning strategies were discussed. 
    more » « less
  3. Cohen, J; Solano, G (Ed.)
    This study investigates the effects of embodied learning experiences in learning abstract concepts, such as computational thinking (CT), among young learners. Specifically, it examines whether the benefits of embodied learning can be replicated within a mixed-reality setting, where students engage with virtual objects to perform CT tasks. A group of ten first-grade students from an elementary school participated, engaging in embodied learning activities followed by assessments in CT. Through the analysis of video recordings, it was observed that participants could effectively articulate CT concepts, including the understanding of programming code meanings and their sequences, through their bodily movements. The congruence between students’ bodily movement and CT concepts was found to be advantageous for their comprehension. However, the study also noted instances of incongruent movements that did not align with the intended CT concepts, which attracted researchers’ attentions. The study identified two distinct types of embodiment manifested in the mixed-reality environment, shedding light on the nuanced dynamics of embodied learning in the context of CT education. 
    more » « less
  4. Langran, L.; Henriksen, D. (Ed.)
    This study introduces an Augmented-Reality-based learning system that aims to support young students’ embodied learning in block-based programming activities where they learn computational concepts and create meaningful chunks of codes. Students are going to perform episode-embedded path-finding tasks, which are designed to practice their capacities of applying computational thinking in a reasonable manner to solve problems within different scenarios. Grounded on an embodied cognition approach, the AR integration creates a concrete and tangible environment for young students to understand abstract conceptual knowledge in an engaging and interactive way, with a close connection built between the real and virtual worlds. 
    more » « less
  5. Abstract Computational thinking is acknowledged as an essential competency for everyone to learn. However, teachers find it challenging to implement the existing learning approaches in K-12 settings because the existing approaches often focus on teaching computing concepts and skills (i.e., programming skills) rather than on helping students develop their computational thinking competency—a competency that can be used across disciplinary boundaries in accordance with curriculum requirements. To address this need, the current study investigated how game-based learning influenced middle school students’ learning processes, particularly on the development of computational thinking competency, self-efficacy toward computational thinking, and engagement during gameplay. Additionally, the study examined how these outcomes were moderated by individual differences. We observed evidence that the gaming experience influenced students’ computational thinking self-efficacy, but not computational thinking competency or game-based engagement. Compared to age (grade) and prior gaming experience, gender tended to play a more important role in moderating students’ computational thinking competency, self-efficacy toward computational thinking competency, and game-based engagement. Implications and possible directions for future research regarding using game-based learning to enhance computational thinking competency are discussed. 
    more » « less