skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Embodied Learning for Computational Thinking in a Mixed-Reality Context
This study examined the effects of embodied learning experiences on students’ understanding of computational thinking (CT) concepts and their ability to solve CT problems. In a mixed-reality learning environment, students mapped CT concepts, such as sequencing and loops, onto their bodily movements. These movements were later applied to robot programming tasks, where students used the same CT concepts in a different modality. By explicitly connecting embodied actions with programming tasks, the intervention aimed to enhance students’ comprehension and transfer of CT skills. Forty-four first- and second-grade students participated in the study. The results showed significant improvements in students’ CT competency and positive attitudes toward CT. Additionally, an analysis of robot programming performance identified common errors and revealed how students employed embodied strategies to overcome challenges. The effects of embodied learning and the impact of embodied learning strategies were discussed.  more » « less
Award ID(s):
2048989
PAR ID:
10548575
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Journal of Educational Computing Research
Volume:
62
Issue:
8
ISSN:
0735-6331
Format(s):
Medium: X Size: p. 1719-1740
Size(s):
p. 1719-1740
Sponsoring Org:
National Science Foundation
More Like this
  1. Cohen, J; Solano, G (Ed.)
    This study investigates the effects of embodied learning experiences in learning abstract concepts, such as computational thinking (CT), among young learners. Specifically, it examines whether the benefits of embodied learning can be replicated within a mixed-reality setting, where students engage with virtual objects to perform CT tasks. A group of ten first-grade students from an elementary school participated, engaging in embodied learning activities followed by assessments in CT. Through the analysis of video recordings, it was observed that participants could effectively articulate CT concepts, including the understanding of programming code meanings and their sequences, through their bodily movements. The congruence between students’ bodily movement and CT concepts was found to be advantageous for their comprehension. However, the study also noted instances of incongruent movements that did not align with the intended CT concepts, which attracted researchers’ attentions. The study identified two distinct types of embodiment manifested in the mixed-reality environment, shedding light on the nuanced dynamics of embodied learning in the context of CT education. 
    more » « less
  2. Cohen, J; Solano, G (Ed.)
    This study is implemented with a focus of discovering how students use the practice of embodied learning to gain knowledge of computational thinking (CT). An intervention was executed at an elementary school in a midwestern state, where students used a marker free virtual reality system to engage in a task that requires them to use the CT concepts and skills. Students participated in the path finding activity within the AR system, and demonstrated accounts of how they use their body to express their understanding of abstract CT concepts. Moreover, the affordances of the AR system were integrated to the student’s learning experience, furthering the discussion of how student’s embodied movement within the virtual world influences their learning outcomes of CT concepts. As an attempt to analyze the embodied learning experience of abstract notions, the researchers developed a coding framework that introduces the mapping of abstract CT concepts and the tangible embodied action that reflects each concept. This short paper thus presents the framework for embodied computational thinking skills, and further elaborates on the future implications of the on-going work. 
    more » « less
  3. Langran, L.; Henriksen, D. (Ed.)
    This study introduces an Augmented-Reality-based learning system that aims to support young students’ embodied learning in block-based programming activities where they learn computational concepts and create meaningful chunks of codes. Students are going to perform episode-embedded path-finding tasks, which are designed to practice their capacities of applying computational thinking in a reasonable manner to solve problems within different scenarios. Grounded on an embodied cognition approach, the AR integration creates a concrete and tangible environment for young students to understand abstract conceptual knowledge in an engaging and interactive way, with a close connection built between the real and virtual worlds. 
    more » « less
  4. A literature review revealed that students learning computational thinking via Scratch often require substantial teacher support. We surveyed grade 6-9 teachers to learn their perceptions of student engagement with computational thinking (CT) and how well their needs are met by existing CT learning systems. The results led us to extend the trend of balancing Scratch’s agency with structure to better serve learners and reduce burden on teachers aiming to learn and teach CT. In this paper, we review architecture and implementation strategies developed to integrate Parsons Programming Puzzles (PPPs) with Scratch, and then analyze their effects on adults, who crucially influence the education of their children. The results from our pilot study suggest PPPs catalyze CT motivation, reduce extraneous cognitive load, and increase learning efficiency without jeopardizing performance on transfer tasks. 
    more » « less
  5. Embodied learning represents a natural and immersive approach to education, where the physical engagement of learners plays a critical role in how they perceive and internalize concepts. This allows students to actively embody and explore knowledge through interaction with their environment, significantly enhancing retention and understanding of complex subjects. However, researchers face significant challenges in exploring children's learning in these physically interactive spaces, particularly due to the complexity of tracking multiple students' movements and dynamic interactions in real-time. To address these challenges, this paper introduces a Double Diamond design thinking process for developing an AI-enhanced timeline aimed at assisting researchers in visualizing and analyzing interactions within embodied learning environments. We outline key considerations, challenges, and lessons learned in this user-centered design process. Our goal is to create a timeline that employs state-of-the-art AI techniques to help researchers interpret complex datasets, such as children's movements, gaze directions, and affective states during learning activities, thereby simplifying their tasks and augmenting the process of interaction analysis. 
    more » « less