skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Feature Selection using e-values
In the context of supervised parametric models, we introduce the concept of e-values. An e-value is a scalar quantity that represents the proximity of the sampling distribution of parameter estimates in a model trained on a subset of features to that of the model trained on all features (i.e. the full model). Under general conditions, a rank ordering of e-values separates models that contain all essential features from those that do not. The e-values are applicable to a wide range of parametric models. We use data depths and a fast resampling-based algorithm to implement a feature selection procedure using e-values, providing consistency results. For a p-dimensional feature space, this procedure requires fitting only the full model and evaluating p + 1 models, as opposed to the traditional requirement of fitting and evaluating 2^p models. Through experiments across several model settings and synthetic and real datasets, we establish that the e-values method as a promising general alternative to existing model-specific methods of feature selection  more » « less
Award ID(s):
1939956 1939916 1737918
PAR ID:
10530364
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of the 39th International Conference on Machine Learning
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Performance of classifiers is often measured in terms of average accuracy on test data. Despite being a standard measure, average accuracy fails in characterising the fit of the model to the underlying conditional law of labels given the features vector (Y∣X), e.g. due to model misspecification, over fitting, and high-dimensionality. In this paper, we consider the fundamental problem of assessing the goodness-of-fit for a general binary classifier. Our framework does not make any parametric assumption on the conditional law Y∣X and treats that as a black-box oracle model which can be accessed only through queries. We formulate the goodness-of-fit assessment problem as a tolerance hypothesis testing of the form H0:E[Df(Bern(η(X))‖Bern(η^(X)))]≤τ where Df represents an f-divergence function, and η(x), η^(x), respectively, denote the true and an estimate likelihood for a feature vector x admitting a positive label. We propose a novel test, called Goodness-of-fit with Randomisation and Scoring Procedure (GRASP) for testing H0, which works in finite sample settings, no matter the features (distribution-free). We also propose model-X GRASP designed for model-X settings where the joint distribution of the features vector is known. Model-X GRASP uses this distributional information to achieve better power. We evaluate the performance of our tests through extensive numerical experiments. 
    more » « less
  2. Motivated by mobile devices that record data at a high frequency, we propose a new methodological framework for analyzing a semi-parametric regression model that allow us to study a nonlinear relationship between a scalar response and multiple functional predictors in the presence of scalar covariates. Utilizing functional principal component analysis (FPCA) and the least-squares kernel machine method (LSKM), we are able to substantially extend the framework of semi-parametric regression models of scalar responses on scalar predictors by allowing multiple functional predictors to enter the nonlinear model. Regularization is established for feature selection in the setting of reproducing kernel Hilbert spaces. Our method performs simultaneously model fitting and variable selection on functional features. For the implementation, we propose an effective algorithm to solve related optimization problems in that iterations take place between both linear mixed-effects models and a variable selection method (e.g., sparse group lasso). We show algorithmic convergence results and theoretical guarantees for the proposed methodology. We illustrate its performance through simulation experiments and an analysis of accelerometer data. 
    more » « less
  3. Abstract E-values have gained attention as potential alternatives to p-values as measures of uncertainty, significance and evidence. In brief, e-values are realized by random variables with expectation at most one under the null; examples include betting scores, (point null) Bayes factors, likelihood ratios and stopped supermartingales. We design a natural analogue of the Benjamini-Hochberg (BH) procedure for false discovery rate (FDR) control that utilizes e-values, called the e-BH procedure, and compare it with the standard procedure for p-values. One of our central results is that, unlike the usual BH procedure, the e-BH procedure controls the FDR at the desired level—with no correction—for any dependence structure between the e-values. We illustrate that the new procedure is convenient in various settings of complicated dependence, structured and post-selection hypotheses, and multi-armed bandit problems. Moreover, the BH procedure is a special case of the e-BH procedure through calibration between p-values and e-values. Overall, the e-BH procedure is a novel, powerful and general tool for multiple testing under dependence, that is complementary to the BH procedure, each being an appropriate choice in different applications. 
    more » « less
  4. The traditional framework for feature selection treats all features as costing the same amount. However, in reality, a scientist often has considerable discretion regarding which variables to measure, and the decision involves a tradeoff between model accuracy and cost (where cost can refer to money, time, difficulty or intrusiveness). In particular, unnecessarily including an expensive feature in a model is worse than unnecessarily including a cheap feature. We propose a procedure, which we call cheap knockoffs, for performing feature selection in a cost‐conscious manner. The key idea behind our method is to force higher cost features to compete with more knockoffs than cheaper features. We derive an upper bound on the weighted false discovery proportion associated with this procedure, which corresponds to the fraction of the feature cost that is wasted on unimportant features. We prove that this bound holds simultaneously with high probability over a path of selected variable sets of increasing size. A user may thus select a set of features based, for example, on the overall budget, while knowing that no more than a particular fraction of feature cost is wasted. We investigate, through simulation and a biomedical application, the practical importance of incorporating cost considerations into the feature selection process. 
    more » « less
  5. Abstract We present a general class of machine learning algorithms called parametric matrix models. In contrast with most existing machine learning models that imitate the biology of neurons, parametric matrix models use matrix equations that emulate physical systems. Similar to how physics problems are usually solved, parametric matrix models learn the governing equations that lead to the desired outputs. Parametric matrix models can be efficiently trained from empirical data, and the equations may use algebraic, differential, or integral relations. While originally designed for scientific computing, we prove that parametric matrix models are universal function approximators that can be applied to general machine learning problems. After introducing the underlying theory, we apply parametric matrix models to a series of different challenges that show their performance for a wide range of problems. For all the challenges tested here, parametric matrix models produce accurate results within an efficient and interpretable computational framework that allows for input feature extrapolation. 
    more » « less