skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FedCBO: Reaching Group Consensus in Clustered Federated Learning through Consensus-based Optimization
Federated learning is an important framework in modern machine learning that seeks to integrate the training of learning models from multiple users, each user having their own local data set, in a way that is sensitive to data privacy and to communication loss constraints. In clustered federated learning, one assumes an additional unknown group structure among users, and the goal is to train models that are useful for each group, rather than simply training a single global model for all users. In this paper, we propose a novel solution to the problem of clustered federated learning that is inspired by ideas in consensus-based optimization (CBO). Our new CBO-type method is based on a system of interacting particles that is oblivious to group memberships. Our model is motivated by rigorous mathematical reasoning, which includes a mean-field analysis describing the large number of particles limit of our particle system, as well as convergence guarantees for the simultaneous global optimization of general non-convex objective functions (corresponding to the loss functions of each cluster of users) in the mean-field regime. Experimental results demonstrate the efficacy of our FedCBO algorithm compared to other state-of-the-art methods and help validate our methodological and theoretical work.  more » « less
Award ID(s):
2023239
PAR ID:
10530413
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of Machine Learning Research
Date Published:
Journal Name:
Journal of machine learning research
Volume:
25
ISSN:
1532-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Adversarial attacks pose significant challenges in many machine learning applications, particularly in the setting of distributed training and federated learning, where malicious agents seek to corrupt the training process with the goal of jeopardizing and compromising the performance and reliability of the final models. In this paper, we address the problem of robust federated learning in the presence of such attacks by formulating the training task as a bi-level optimization problem. We conduct a theoretical analysis of the resilience of consensus-based bi-level optimization (CB2O), an interacting multi-particle metaheuristic optimization method, in adversarial settings. Specifically, we provide a global convergence analysis of CB2O in mean-field law in the presence of malicious agents, demonstrating the robustness of CB2O against a diverse range of attacks. Thereby, we offer insights into how specific hyperparameter choices enable to mitigate adversarial effects. On the practical side, we extend CB2O to the clustered federated learning setting by proposing FedCB2O, a novel interacting multi-particle system, and design a practical algorithm that addresses the demands of real-world applications. Extensive experiments demonstrate the robustness of the FedCB2O algorithm against label-flipping attacks in decentralized clustered federated learning scenarios, showcasing its effectiveness in practical contexts. This article is part of the theme issue ‘Partial differential equations in data science’. 
    more » « less
  2. Federated learning is an emerging machine learning framework where models are trained using heterogeneous datasets collected by a large number of edge clients. Standard methods to aggregate local training models weigh each model by a fraction of data size at that client. However, such approaches result in unfairness to clients with small and unique datasets, leading to inferior accuracy of the global model at these clients. In this work, we propose a novel optimization framework called DRFL that dynamically adjusts the weight assigned to each client, and we combine it with a biased client selection strategy, both of which encourage fairness in federated training. We validate the effectiveness of our proposed method on a suite of both synthetic and real federated datasets, revealing the proposed method outperforms existing baselines in terms of resulting fairness. 
    more » « less
  3. null (Ed.)
    Federated learning enables thousands of participants to construct a deep learning model without sharing their private training data with each other. For example, multiple smartphones can jointly train a next-word predictor for keyboards without revealing what individual users type. We demonstrate that any participant in federated learning can introduce hidden backdoor functionality into the joint global model, e.g., to ensure that an image classifier assigns an attacker-chosen label to images with certain features, or that a word predictor completes certain sentences with an attacker-chosen word. We design and evaluate a new model-poisoning methodology based on model replacement. An attacker selected in a single round of federated learning can cause the global model to immediately reach 100% accuracy on the backdoor task. We evaluate the attack under different assumptions for the standard federated-learning tasks and show that it greatly outperforms data poisoning. Our generic constrain-and-scale technique also evades anomaly detection-based defenses by incorporating the evasion into the attacker's loss function during training. 
    more » « less
  4. Optimizing objectives under constraints, where both the objectives and constraints are black box functions, is a common scenario in real-world applications such as the design of medical therapies, industrial process optimization, and hyperparameter optimization. One popular approach to handle these complex scenarios is Bayesian Optimization (BO). However, when it comes to the theoretical understanding of constrained Bayesian optimization (CBO), the existing framework often relies on heuristics, approximations, or relaxation of objectives and, therefore, lacks the same level of theoretical guarantees as in canonical BO. In this paper, we exclude the boundary candidates that could be compromised by noise perturbation and aim to find the interior optimum of the black-box-constrained objective. We rely on the insight that optimizing the objective and learning the constraints can both help identify the high-confidence regions of interest (ROI) that potentially contain the interior optimum. We propose an efficient CBO framework that intersects the ROIs identified from each aspect on a discretized search space to determine the general ROI. Then, on the ROI, we optimize the acquisition functions, balancing the learning of the constraints and the optimization of the objective. We showcase the efficiency and robustness of our proposed CBO framework through the high probability regret bounds for the algorithm and extensive empirical evidence. 
    more » « less
  5. We study the optimization of wide neural networks (NNs) via gradient flow (GF) in setups that allow feature learning while admitting non-asymptotic global convergence guarantees. First, for wide shallow NNs under the mean-field scaling and with a general class of activation functions, we prove that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF. Building upon this analysis, we study a model of wide multi-layer NNs whose second-to-last layer is trained via GF, for which we also prove a linear-rate convergence of the training loss to zero, but regardless of the input dimension. We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart. 
    more » « less