Education literature has long emphasized the compounding benefits of reflective practice. Although reflection has largely been used as a tool for developing writing skills, contemporary research has explored its contributions to other disciplines including professional occupations such as nursing, teaching and engineering. Reflective assignments encourage engineering students to think critically about the impact engineers can and should have in the global community and their future role in engineering. The Department of Electrical and Computer Engineering at a small liberal arts college adopted ePortfolios in a first-year design course to encourage students to reframe their experiences and cultivate their identities as engineers. Our recent work demonstrated that students who create ePortfolios cultivate habits of reflective thinking that continue in subsequent courses within our program’s design sequence. However, student ability to transfer reflective habits across domains has remained unclear and encouraging critical engagement beyond the focused scope of technical content within more traditional core engineering courses is often difficult. In this work, we analyze students’ ability to transfer habits of reflective thinking across domains from courses within a designfocused course sequence to technical content-focused courses within a degree program. Extending reflection into core courses in a curriculum is important for several reasons. First, it stimulates metacognition which enables students to transfer content to future courses. Second, it builds students’ ability to think critically about technical subject matter. And third, it contributes to the ongoing development of their identities as engineers. Particularly for students traditionally underrepresented in engineering, the ability to integrate prior experiences and interests into one’s evolving engineering identity may lead to better retention and sense of belonging in the profession. In the first-year design course, electrical and computer engineering students (N=28) at a liberal arts university completed an ePortfolio assignment to explore the discipline. Using a combination of inductive and deductive coding techniques, multiple members of our team coded student reports and checked for intercoder reliability. Previously, we found that students’ reflection dramatically improved in the second-year design course [1]. Drawing upon Hatton and Smith’s (1995) categorizations of reflective thinking [2], we observed that students were particularly proficient in Dialogic Reflection, or reflection that relates to their own histories, interests, and experiences. In this paper, we compare the quality of student reflections in the second-year design course with those in a second-year required technical course to discover if reflective capabilities have transferred into a technical domain. We discovered that students are able to transfer reflective thinking across different types of courses, including those emphasizing technical content, after a single ePortfolio activity. Furthermore, we identified a similar pattern of improvement most notably in Dialogic Reflection. This finding indicates that students are developing sustained habits of reflective thinking. As a result, we anticipate an increase in their ability to retain core engineering concepts throughout the curriculum. Our future plans are to expand ePortfolio usage to all design courses as well as some
more »
« less
Intersections of Design Thinking and Perceptions of Success for Electrical, Computer, and Software Engineering Students
Engineering design thinking has become an important part of the educational discussion for both researchers and practitioners. Colleges and universities seek to graduate engineering students who can engage in the complex nature of combining both technical performance with design thinking skills. Prior research has shown that design thinking can be a solution for solving complicated technical and social issues in a holistic, adaptive way. However, little is known about how students make sense of their design thinking experiences and reconcile that into their perceptions of what it means to be a successful engineer. As part of a five-year National Science Foundation REvolutionizing Engineering and Computer Science Departments (NSF-RED) grant, this study highlights the experiences of students engaged in a course which has been redesigned to enhance student development through design thinking pedagogy. This case study sought to understand how electrical, computer, and software engineering students engage with design thinking and how that engagement shapes their perceptions of what success looks like. The case study was informed through observations of lecture and lab classroom contexts, interviews with students, and a review of relevant course documents. Participants met the following criteria: (a) were over the age of 18, (b) majoring in CES engineering, and (c) were currently enrolled in one of two courses currently undergoing redesign: a second-year electrical engineering course called Circuits or a second-year computer engineering course called Embedded Systems. Preliminary findings reveal that students engaged in the design thinking course described a disconnect between design thinking elements of the course and their perceptions of what it meant to be a successful electrical, computer, or software engineer. Although design thinking concepts focused on empathy-building and customer needs, it was often difficult for engineering students to see beyond the technical content of their course and conceptualize elements of design thinking as essential to their successful performance as engineers. This study bears significance to practitioners and researchers interested in (re)designing curriculum to meet the growing needs of innovation for today’s customer’s. Implications for policy and practice will be discussed to enhance the way that engineering programs, curricula, and workforce training are created.
more »
« less
- Award ID(s):
- 1623125
- PAR ID:
- 10337975
- Date Published:
- Journal Name:
- 2019 ASEE Annual Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This qualitative case study explored how undergraduate student perceptions of design thinking pedagogy influence computer, electrical, and software engineering identity. The study found that design thinking pedagogy reinforces recognition of an engineering identity, particularly for those from historically marginalized groups (i.e., women, people of color). Intentional implementation, including organization and framing of design thinking pedagogy, was an important foundation to foster student interest in the course and connection to their role as an engineer.more » « less
-
This work-in-progress research paper explores the intersection of cross-functional teamwork and design thinking within the course design process through collaborative autoethnography. Collaborative autoethnography uses individual and dialogic reflections to provide a detailed and nuanced exploration of experiences within a culture (e.g., a course design team) and generate insights that might inform broader community of individuals who experience related cultures. In this study, we investigate how individual educators attempt to shape and are shaped by a unique team course design process in electrical and computer engineering. The participant-researchers in this study are three electrical and computer engineering faculty members and one engineering education researcher who have participated in a six-semester-long course redesign effort. The effort has emphasized building and utilizing a new cross-functional team approach, imbued with design thinking strategies, to support improved professional formation and student-centeredness within an embedded systems course for electrical and computer engineering students. In this study, data collection and analysis were integrated and iterative. This process engaged cycles of setting writing prompts, individual writing, group discussion and reflection, and setting new writing prompts. This process was repeated as participant-researchers and the team as a whole refined their insights, explored emergent topics, and connected their observations to external research and scholarship. The autoethnographic process is ongoing, but five themes have emerged that describe key features of the team course design process and experience: (1) uncertainty, (2) navigating the team, (3) navigating the self, (4) navigating the system, and (5) process. The paper features a collection of participant-researcher reflections related to these emergent themes.more » « less
-
In the engineering ethics education literature, there has recently been increasing interest in longitudinal studies of engineering students’ moral development. Understanding how first-year engineering students perceive ethics can provide baseline information critical for understanding their moral development during their subsequent journey in engineering learning. Existing studies have mainly examined how first-year engineering students perceive the structure and elements of ethics curricula, pregiven ethics scenarios, what personal ethical beliefs and specific political ideals they hold (e.g., fairness and political involvement), and institutional ethical climates. Complementary to existing studies, our project surveyed how first-year engineering students perceive professional ethical values. Specifically, we asked students to list the three most important values for defining a good engineer. This question responds to a gap in existing engineering ethics literature that engineering students’ perceptions (especially first-year students) of professional virtues and values are not sufficiently addressed. We argue that designing effective and engaged ethics education experiences needs to consider the professional values perceived by students and how these values are related to the values communicated in the engineering curriculum. This paper is part of a larger project that compares how engineering students develop moral reasoning and intuition longitudinally across three cultures/countries: the United States, Netherlands, and China. We hope that findings from this paper can be useful for engineering educators to reflect on and design subsequent ethics education programs that are more responsive to students’ perceptions of professional values when beginning an engineering program.more » « less
-
null (Ed.)What do engineering students in 2020 need to know about energy to be successful in the workplace and contribute to addressing society’s issues related to energy? Beginning with this question, we have designed a new course for second-year engineering students. Drawing on the interdisciplinary backgrounds of our diverse team of engineering instructors, we aimed to provide an introduction to energy for all engineering students that challenged the dominant discourse in engineering by valuing students’ lived experiences and bringing in examples situated in different cultural contexts. An Integrated Approach to Energy was offered for the first time in Spring 2020 for 18 students. In this paper, we describe the design of the course including learning objectives, content, and pedagogical approach. We assessed students’ learning using exams and the impact of the overall course using interviews. Students demonstrated achievement of the learning objectives in technical areas. In addition, interviews revealed that they learned about environmental, economic, and social aspects of engineering practice. We intend for this course to serve as a model of engineering as a sociotechnical endeavor by challenging students with scenarios that are technically demanding and require critical thinking about contextual implications.more » « less
An official website of the United States government

