skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of Imperfect Exoskeleton Algorithms on Step Characteristics, Task Performance, and Perception of Exoskeleton Performance
Award ID(s):
1952279
PAR ID:
10530582
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-9190-7
Page Range / eLocation ID:
4088 to 4093
Format(s):
Medium: X
Location:
Detroit, MI, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. IntroductionWalking is essential for daily life but poses a significant challenge for many individuals with neurological conditions like cerebral palsy (CP), which is the leading cause of childhood walking disability. Although lower-limb exoskeletons show promise in improving walking ability in laboratory and controlled overground settings, it remains unknown whether these benefits translate to real-world environments, where they could have the greatest impact. MethodsThis feasibility study evaluated whether an untethered ankle exoskeleton with an adaptable controller can improve spatiotemporal outcomes in eight individuals with CP after low-frequency exoskeleton-assisted gait training on real-world terrain. ResultsComparing post- and pre-assessment, assisted walking speed increased by 11% and cadence by 7% (p= 0.003;p= 0.006), while unassisted walking speed increased by 8% and cadence by 5% (p= 0.009;p= 0.012). In the post-assessment, assisted walking speed increased by 9% and stride length by 8% relative to unassisted walking (p< 0.001;p< 0.001). Improvements in walking speed were more strongly associated with longer strides than higher cadence (R2= 0.92;R2= 0.68). Muscle activity outcomes, including co-contraction of the soleus and tibialis anterior, did not significantly change after training. DiscussionThese findings highlight the spatiotemporal benefits of an adaptive ankle exoskeleton for individuals with CP in real-world settings after short-term training. This work paves the way for future randomized controlled trials (RCTs) to evaluate the isolated effects of adaptive ankle exoskeletons on gait performance and neuromuscular outcomes in individuals with CP in real-world environments 
    more » « less
  2. null (Ed.)
    In this study, a methodology for designing a task-based exoskeleton which can recreate the end-effector trajectory of a given limb during a rehabilitation task/movement is presented. The exoskeleton provides an option to replace traditional joint-based exoskeleton joints, which often have alignment issues with the biological joint. The proper fit of the exoskeleton to the user and task are research topics to reduce pain or joint injuries as well as for the execution of the task. The proposed task-based synthesis method was successfully applied to generate the 3D motions of the elbow flexion and extensions using a one degree of freedom (DOF), spatial four-bar mechanism. The elbow joint is analyzed through motion capture system to develop the bio-exoskeleton. The resulted exoskeleton does not need to align with the corresponding limb joint to generate the desired anatomical motion. 
    more » « less