skip to main content

Title: Design of Bio-Exoskeleton for Elbow Rehabilitation
In this study, a methodology for designing a task-based exoskeleton which can recreate the end-effector trajectory of a given limb during a rehabilitation task/movement is presented. The exoskeleton provides an option to replace traditional joint-based exoskeleton joints, which often have alignment issues with the biological joint. The proper fit of the exoskeleton to the user and task are research topics to reduce pain or joint injuries as well as for the execution of the task. The proposed task-based synthesis method was successfully applied to generate the 3D motions of the elbow flexion and extensions using a one degree of freedom (DOF), spatial four-bar mechanism. The elbow joint is analyzed through motion capture system to develop the bio-exoskeleton. The resulted exoskeleton does not need to align with the corresponding limb joint to generate the desired anatomical motion.

; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
2021 Design of Medical Devices Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. Exoskeletons and robots have been used as a common practice to assist and automate rehabilitation exercises. Exoskeleton fitting and alignments are important factors and challenges that need to be addressed for smooth and safe operations and better outcomes. Such challenges often dictate the exoskeleton design approaches. Some focus on simplifying and mimicking human joints (joint-based) while others have a focus on a specific task (task-based), which does not need to align with the corresponding limb joint/s to generate the desired anatomical motion. In this study, the two design approaches are assessed in an elbow flexion-extension task. The muscle responses have been collected and compared with and without the exoskeletons. Based on 6 with no disability participants, the normalized Electromyography (EMG) RMS values are plotted. The plot profiles and magnitudes are used as a base to assess the exoskeleton alignment. For this specific task, the task-based exoskeleton has shown a profile closer to the one without exoskeleton with a relatively identical support as the joint-based one; the latter is evidenced through most subjects’ muscle response magnitudes. This preliminary data has shown a good methodology and insight towards the assessment of exoskeletons, but more human subject data is needed with different taskmore »combinations to further strengthen the findings.« less
  2. Perception of limb position and motion combines sensory information from spindles in muscles that span one joint (monoarticulars) and two joints (biarticulars). This anatomical organization should create interactions in estimating limb position. We developed two models, one with only monoarticulars and one with both monoarticulars and biarticulars, to explore how biarticulars influence estimates of arm position in hand ( x, y) and joint ( shoulder, elbow) coordinates. In hand coordinates, both models predicted larger medial-lateral than proximal-distal errors, although the model with both muscle groups predicted that biarticulars would reduce this bias. In contrast, the two models made significantly different predictions in joint coordinates. The model with only monoarticulars predicted that errors would be uniformly distributed because estimates of angles at each joint would be independent. In contrast, the model that included biarticulars predicted that errors would be coupled between the two joints, resulting in smaller errors for combinations of flexion or extension at both joints and larger errors for combinations of flexion at one joint and extension at the other joint. We also carried out two experiments to examine errors made by human subjects during an arm position matching task in which a robot passively moved one arm tomore »different positions and the subjects moved their other arm to mirror-match each position. Errors in hand coordinates were similar to those predicted by both models. Critically, however, errors in joint coordinates were only similar to those predicted by the model with monoarticulars and biarticulars. These results highlight how biarticulars influence perceptual estimates of limb position by helping to minimize medial-lateral errors. NEW & NOTEWORTHY It is unclear how sensory information from muscle spindles located within muscles spanning multiple joints influences perception of body position and motion. We address this issue by comparing errors in estimating limb position made by human subjects with predicted errors made by two musculoskeletal models, one with only monoarticulars and one with both monoarticulars and biarticulars. We provide evidence that biarticulars produce coupling of errors between joints, which help to reduce errors.« less
  3. For the controller of wearable lower-limb assistive devices, quantitative understanding of human locomotion serves as the basis for human motion intent recognition and joint-level motion control. Traditionally, the required gait data are obtained in gait research laboratories, utilizing marker-based optical motion capture systems. Despite the high accuracy of measurement, marker-based systems are largely limited to laboratory environments, making it nearly impossible to collect the desired gait data in real-world daily-living scenarios. To address this problem, the authors propose a novel exoskeleton-based gait data collection system, which provides the capability of conducting independent measurement of lower limb movement without the need for stationary instrumentation. The basis of the system is a lightweight exoskeleton with articulated knee and ankle joints. To minimize the interference to a wearer’s natural lower-limb movement, a unique two-degrees-of-freedom joint design is incorporated, integrating a primary degree of freedom for joint motion measurement with a passive degree of freedom to allow natural joint movement and improve the comfort of use. In addition to the joint-embedded goniometers, the exoskeleton also features multiple positions for the mounting of inertia measurement units (IMUs) as well as foot-plate-embedded force sensing resistors to measure the foot plantar pressure. All sensor signals are routedmore »to a microcontroller for data logging and storage. To validate the exoskeleton-provided joint angle measurement, a comparison study on three healthy participants was conducted, which involves locomotion experiments in various modes, including overground walking, treadmill walking, and sit-to-stand and stand-to-sit transitions. Joint angle trajectories measured with an eight-camera motion capture system served as the benchmark for comparison. Experimental results indicate that the exoskeleton-measured joint angle trajectories closely match those obtained through the optical motion capture system in all modes of locomotion (correlation coefficients of 0.97 and 0.96 for knee and ankle measurements, respectively), clearly demonstrating the accuracy and reliability of the proposed gait measurement system.« less
  4. Upper limb mobility impairments affect individuals at all life stages. Exoskeletons can assist in rehabilitation as well as performing Activities of Daily Living (ADL). Most commercial assistive devices still rely on rigid robotics with constrained biomechanical degrees of freedom that may even increase user exertion. Therefore, this paper discusses the iterative design and development of a novel hybrid pneumatic actuation and Shape Memory Alloy (SMA) based wearable soft exoskeleton to assist in shoulder abduction and horizontal flexion/extension movements, with integrated soft strain sensing to track shoulder joint motion. The garment development was done in two stages which involved creating (1) SMA actuators integrated with soft sensing, and (2) integrating pneumatic actuation. The final soft exoskeleton design was developed based on the insights gained from two prior prototypes in terms of wearability, usability, comfort, and functional specifications (i.e., placement and number) of the sensors and actuators. The final exoskeleton is a modular, multilayer garment which uses a hybrid and customizable actuation strategy (SMA and inflatable pneumatic bladder).
  5. Abstract Most motion capture measurements suffer from soft-tissue artifacts (STA). Especially affected are rotations about the long axis of a limb segment, such as humeral internal-external rotation (HIER) and forearm pronation-supination (FPS). Unfortunately, most existing methods to compensate for STA were designed for optoelectronic motion capture systems. We present and evaluate an STA compensation method that (1) compensates for STA in HIER and/or FPS, (2) is developed specifically for electromagnetic motion capture systems, and (3) does not require additional calibration or data. To compensate for STA, calculation of HIER angles relies on forearm orientation, and calculation of FPS angles rely on hand orientation. To test this approach, we recorded whole-arm movement data from eight subjects and compared their joint angle trajectories calculated according to progressive levels of STA compensation. Compensated HIER and FPS angles were significantly larger than uncompensated angles. Although the effect of STA compensation on other joint angles (besides HIER and FPS) was usually modest, significant effects were seen in certain degrees-of-freedom under some conditions. Overall, the method functioned as intended during most of the range of motion of the upper limb, but it becomes unstable in extreme elbow extension and extreme wrist flexion–extension. Specifically, this method ismore »not recommended for movements within 20 deg of full elbow extension, full wrist flexion, or full wrist extension. Since this method does not require additional calibration of data, it can be applied retroactively to data collected without the intent to compensate for STA.« less