skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on December 17, 2025

Title: Exoskeleton gait training on real-world terrain improves spatiotemporal performance in cerebral palsy
Introduction

Walking is essential for daily life but poses a significant challenge for many individuals with neurological conditions like cerebral palsy (CP), which is the leading cause of childhood walking disability. Although lower-limb exoskeletons show promise in improving walking ability in laboratory and controlled overground settings, it remains unknown whether these benefits translate to real-world environments, where they could have the greatest impact.

Methods

This feasibility study evaluated whether an untethered ankle exoskeleton with an adaptable controller can improve spatiotemporal outcomes in eight individuals with CP after low-frequency exoskeleton-assisted gait training on real-world terrain.

Results

Comparing post- and pre-assessment, assisted walking speed increased by 11% and cadence by 7% (p= 0.003;p= 0.006), while unassisted walking speed increased by 8% and cadence by 5% (p= 0.009;p= 0.012). In the post-assessment, assisted walking speed increased by 9% and stride length by 8% relative to unassisted walking (p< 0.001;p< 0.001). Improvements in walking speed were more strongly associated with longer strides than higher cadence (R2= 0.92;R2= 0.68). Muscle activity outcomes, including co-contraction of the soleus and tibialis anterior, did not significantly change after training.

Discussion

These findings highlight the spatiotemporal benefits of an adaptive ankle exoskeleton for individuals with CP in real-world settings after short-term training. This work paves the way for future randomized controlled trials (RCTs) to evaluate the isolated effects of adaptive ankle exoskeletons on gait performance and neuromuscular outcomes in individuals with CP in real-world environments

 
more » « less
Award ID(s):
2045966
PAR ID:
10569291
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers in Bioengineering and Biotechnology
Date Published:
Journal Name:
Frontiers in Bioengineering and Biotechnology
Volume:
12
ISSN:
2296-4185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Walking speed and energy economy tend to decline with age. Lower-limb exoskeletons have demonstrated potential to improve either measure, but primarily in studies conducted on healthy younger adults. Promising techniques like optimization of exoskeleton assistance have yet to be tested with older populations, while speed and energy consumption have yet to be simultaneously optimized for any population.

    Methods

    We investigated the effectiveness of human-in-the-loop optimization of ankle exoskeletons with older adults. Ten healthy adults > 65 years of age (5 females; mean age: 72 ± 3 yrs) participated in approximately 240 min of training and optimization with tethered ankle exoskeletons on a self-paced treadmill. Multi-objective human-in-the-loop optimization was used to identify assistive ankle plantarflexion torque patterns that simultaneously improved self-selected walking speed and metabolic rate. The effects of optimized exoskeleton assistance were evaluated in separate trials.

    Results

    Optimized exoskeleton assistance improved walking performance for older adults. Both objectives were simultaneously improved; self-selected walking speed increased by 8% (0.10 m/s;p = 0.001) and metabolic rate decreased by 19% (p = 0.007), resulting in a 25% decrease in energetic cost of transport (p = 8e-4) compared to walking with exoskeletons applying zero torque. Compared to younger participants in studies optimizing a single objective, our participants required lower exoskeleton torques, experienced smaller improvements in energy use, and required more time for motor adaptation.

    Conclusions

    Our results confirm that exoskeleton assistance can improve walking performance for older adults and show that multiple objectives can be simultaneously addressed through human-in-the-loop optimization.

     
    more » « less
  2. Abstract Background

    Individualized, targeted, and intense training is the hallmark of successful gait rehabilitation in people post-stroke. Specifically, increasing use of the impaired ankle to increase propulsion during the stance phase of gait has been linked to higher walking speeds and symmetry. Conventional progressive resistance training is one method used for individualized and intense rehabilitation, but often fails to target paretic ankle plantarflexion during walking. Wearable assistive robots have successfullyassistedankle-specific mechanisms to increase paretic propulsion in people post-stroke, suggesting their potential to provide targetedresistanceto increase propulsion, but this application remains underexamined in this population. This work investigates the effects of targeted stance-phase plantarflexion resistance training with a soft ankle exosuit on propulsion mechanics in people post-stroke.

    Methods

    We conducted this study in nine individuals with chronic stroke and tested the effects of three resistive force magnitudes on peak paretic propulsion, ankle torque, and ankle power while participants walked on a treadmill at their comfortable walking speeds. For each force magnitude, participants walked for 1 min while the exosuit was inactive, 2 min with active resistance, and 1 min with the exosuit inactive, in sequence. We evaluated changes in gait biomechanics during the active resistance and post-resistance sections relative to the initial inactive section.

    Results

    Walking with active resistance increased paretic propulsion by more than the minimal detectable change of 0.8 %body weight at all tested force magnitudes, with an average increase of 1.29 ± 0.37 %body weight at the highest force magnitude. This improvement corresponded to changes of 0.13 ± 0.03 N m kg− 1in peak biological ankle torque and 0.26 ± 0.04 W kg− 1in peak biological ankle power. Upon removal of resistance, propulsion changes persisted for 30 seconds with an improvement of 1.49 ± 0.58 %body weight after the highest resistance level and without compensatory involvement of the unresisted joints or limb.

    Conclusions

    Targeted exosuit-applied functional resistance of paretic ankle plantarflexors can elicit the latent propulsion reserve in people post-stroke. After-effects observed in propulsion highlight the potential for learning and restoration of propulsion mechanics. Thus, this exosuit-based resistive approach may offer new opportunities for individualized and progressive gait rehabilitation.

     
    more » « less
  3. Abstract Introduction

    High-intensity gait training is widely recognized as an effective rehabilitation approach after stroke. Soft robotic exosuits that enhance post-stroke gait mechanics have the potential to improve the rehabilitative outcomes achieved by high-intensity gait training. The objective of thisdevelopment-of-conceptpilot crossover study was to evaluate the outcomes achieved by high-intensity gait training with versus without soft robotic exosuits.

    Methods

    In this 2-arm pilot crossover study, four individuals post-stroke completed twelve visits of speed-based, high-intensity gait training: six consecutive visits of Robotic Exosuit Augmented Locomotion (REAL) gait training and six consecutive visits without the exosuit (CONTROL). The intervention arms were counterbalanced across study participants and separated by 6 + weeks of washout. Walking function was evaluated before and after each intervention using 6-minute walk test (6MWT) distance and 10-m walk test (10mWT) speed. Moreover, 10mWT speeds were evaluated before each training visit, with the time-course of change in walking speed computed for each intervention arm. For each participant, changes in each outcome were compared to minimal clinically-important difference (MCID) thresholds. Secondary analyses focused on changes in propulsion mechanics and associated biomechanical metrics.

    Results

    Large between-group effects were observed for 6MWT distance (d = 1.41) and 10mWT speed (d = 1.14). REAL gait training resulted in an average pre-post change of 68 ± 27 m (p = 0.015) in 6MWT distance, compared to a pre-post change of 30 ± 16 m (p = 0.035) after CONTROL gait training. Similarly, REAL training resulted in a pre-post change of 0.08 ± 0.03 m/s (p = 0.012) in 10mWT speed, compared to a pre-post change of 0.01 ± 06 m/s (p = 0.76) after CONTROL. For both outcomes, 3 of 4 (75%) study participants surpassed MCIDs after REAL training, whereas 1 of 4 (25%) surpassed MCIDs after CONTROL training. Across the training visits, REAL training resulted in a 1.67 faster rate of improvement in walking speed. Similar patterns of improvement were observed for the secondary gait biomechanical outcomes, with REAL training resulting in significantly improved paretic propulsion for 3 of 4 study participants (p < 0.05) compared to 1 of 4 after CONTROL.

    Conclusion

    Soft robotic exosuits have the potential to enhance the rehabilitative outcomes produced by high-intensity gait training after stroke. Findings of thisdevelopment-of-conceptpilot crossover trial motivate continued development and study of the REAL gait training program.

     
    more » « less
  4. Abstract

    Ankle exoskeletons alter whole-body walking mechanics, energetics, and stability by altering center-of-mass (CoM) motion. Controlling the dynamics governing CoM motion is, therefore, critical for maintaining efficient and stable gait. However, how CoM dynamics change with ankle exoskeletons is unknown, and how to optimally model individual-specific CoM dynamics, especially in individuals with neurological injuries, remains a challenge. Here, we evaluated individual-specific changes in CoM dynamics in unimpaired adults and one individual with post-stroke hemiparesis while walking in shoes-only and with zero-stiffness and high-stiffness passive ankle exoskeletons. To identify optimal sets of physically interpretable mechanisms describing CoM dynamics, termedtemplate signatures, we leveraged hybrid sparse identification of nonlinear dynamics (Hybrid-SINDy), an equation-free data-driven method for inferring sparse hybrid dynamics from a library of candidate functional forms. In unimpaired adults, Hybrid-SINDy automatically identified spring-loaded inverted pendulum-like template signatures, which did not change with exoskeletons (p > 0.16), except for small changes in leg resting length (p < 0.001). Conversely, post-stroke paretic-leg rotary stiffness mechanisms increased by 37–50% with zero-stiffness exoskeletons. While unimpaired CoM dynamics appear robust to passive ankle exoskeletons, how neurological injuries alter exoskeleton impacts on CoM dynamics merits further investigation. Our findings support Hybrid-SINDy’s potential to discover mechanisms describing individual-specific CoM dynamics with assistive devices.

     
    more » « less
  5. Abstract Background

    Biofeedback is a promising noninvasive strategy to enhance gait training among individuals with cerebral palsy (CP). Commonly, biofeedback systems are designed to guide movement correction using audio, visual, or sensorimotor (i.e., tactile or proprioceptive) cues, each of which has demonstrated measurable success in CP. However, it is currently unclear how the modality of biofeedback may influence user response which has significant implications if systems are to be consistently adopted into clinical care.

    Methods

    In this study, we evaluated the extent to which adolescents with CP (7M/1F; 14 [12.5,15.5] years) adapted their gait patterns during treadmill walking (6 min/modality) with audiovisual (AV), sensorimotor (SM), and combined AV + SM biofeedback before and after four acclimation sessions (20 min/session) and at a two-week follow-up. Both biofeedback systems were designed to target plantarflexor activity on the more-affected limb, as these muscles are commonly impaired in CP and impact walking function. SM biofeedback was administered using a resistive ankle exoskeleton and AV biofeedback displayed soleus activity from electromyography recordings during gait. At every visit, we measured the time-course response to each biofeedback modality to understand how the rate and magnitude of gait adaptation differed between modalities and following acclimation.

    Results

    Participants significantly increased soleus activity from baseline using AV + SM (42.8% [15.1, 59.6]), AV (28.5% [19.2, 58.5]), and SM (10.3% [3.2, 15.2]) biofeedback, but the rate of soleus adaptation was faster using AV + SM biofeedback than either modality alone. Further, SM-only biofeedback produced small initial increases in plantarflexor activity, but these responses were transient within and across sessions (p > 0.11). Following multi-session acclimation and at the two-week follow-up, responses to AV and AV + SM biofeedback were maintained.

    Conclusions

    This study demonstrated that AV biofeedback was critical to increase plantarflexor engagement during walking, but that combining AV and SM modalities further amplified the rate of gait adaptation. Beyond improving our understanding of how individuals may differentially prioritize distinct forms of afferent information, outcomes from this study may inform the design and selection of biofeedback systems for use in clinical care.

     
    more » « less