Abstract IntroductionHigh-intensity gait training is widely recognized as an effective rehabilitation approach after stroke. Soft robotic exosuits that enhance post-stroke gait mechanics have the potential to improve the rehabilitative outcomes achieved by high-intensity gait training. The objective of thisdevelopment-of-conceptpilot crossover study was to evaluate the outcomes achieved by high-intensity gait training with versus without soft robotic exosuits. MethodsIn this 2-arm pilot crossover study, four individuals post-stroke completed twelve visits of speed-based, high-intensity gait training: six consecutive visits of Robotic Exosuit Augmented Locomotion (REAL) gait training and six consecutive visits without the exosuit (CONTROL). The intervention arms were counterbalanced across study participants and separated by 6 + weeks of washout. Walking function was evaluated before and after each intervention using 6-minute walk test (6MWT) distance and 10-m walk test (10mWT) speed. Moreover, 10mWT speeds were evaluated before each training visit, with the time-course of change in walking speed computed for each intervention arm. For each participant, changes in each outcome were compared to minimal clinically-important difference (MCID) thresholds. Secondary analyses focused on changes in propulsion mechanics and associated biomechanical metrics. ResultsLarge between-group effects were observed for 6MWT distance (d = 1.41) and 10mWT speed (d = 1.14). REAL gait training resulted in an average pre-post change of 68 ± 27 m (p = 0.015) in 6MWT distance, compared to a pre-post change of 30 ± 16 m (p = 0.035) after CONTROL gait training. Similarly, REAL training resulted in a pre-post change of 0.08 ± 0.03 m/s (p = 0.012) in 10mWT speed, compared to a pre-post change of 0.01 ± 06 m/s (p = 0.76) after CONTROL. For both outcomes, 3 of 4 (75%) study participants surpassed MCIDs after REAL training, whereas 1 of 4 (25%) surpassed MCIDs after CONTROL training. Across the training visits, REAL training resulted in a 1.67 faster rate of improvement in walking speed. Similar patterns of improvement were observed for the secondary gait biomechanical outcomes, with REAL training resulting in significantly improved paretic propulsion for 3 of 4 study participants (p < 0.05) compared to 1 of 4 after CONTROL. ConclusionSoft robotic exosuits have the potential to enhance the rehabilitative outcomes produced by high-intensity gait training after stroke. Findings of thisdevelopment-of-conceptpilot crossover trial motivate continued development and study of the REAL gait training program.
more »
« less
Exoskeleton gait training on real-world terrain improves spatiotemporal performance in cerebral palsy
IntroductionWalking is essential for daily life but poses a significant challenge for many individuals with neurological conditions like cerebral palsy (CP), which is the leading cause of childhood walking disability. Although lower-limb exoskeletons show promise in improving walking ability in laboratory and controlled overground settings, it remains unknown whether these benefits translate to real-world environments, where they could have the greatest impact. MethodsThis feasibility study evaluated whether an untethered ankle exoskeleton with an adaptable controller can improve spatiotemporal outcomes in eight individuals with CP after low-frequency exoskeleton-assisted gait training on real-world terrain. ResultsComparing post- and pre-assessment, assisted walking speed increased by 11% and cadence by 7% (p= 0.003;p= 0.006), while unassisted walking speed increased by 8% and cadence by 5% (p= 0.009;p= 0.012). In the post-assessment, assisted walking speed increased by 9% and stride length by 8% relative to unassisted walking (p< 0.001;p< 0.001). Improvements in walking speed were more strongly associated with longer strides than higher cadence (R2= 0.92;R2= 0.68). Muscle activity outcomes, including co-contraction of the soleus and tibialis anterior, did not significantly change after training. DiscussionThese findings highlight the spatiotemporal benefits of an adaptive ankle exoskeleton for individuals with CP in real-world settings after short-term training. This work paves the way for future randomized controlled trials (RCTs) to evaluate the isolated effects of adaptive ankle exoskeletons on gait performance and neuromuscular outcomes in individuals with CP in real-world environments
more »
« less
- Award ID(s):
- 2045966
- PAR ID:
- 10569291
- Publisher / Repository:
- Frontiers in Bioengineering and Biotechnology
- Date Published:
- Journal Name:
- Frontiers in Bioengineering and Biotechnology
- Volume:
- 12
- ISSN:
- 2296-4185
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Gu, Yaodong (Ed.)Traditional gait event detection methods for heel strike and toe-off utilize thresholding with ground reaction force (GRF) or kinematic data, while recent methods tend to use neural networks. However, when subjects’ walking behaviors are significantly altered by an assistive walking device, these detection methods tend to fail. Therefore, this paper introduces a new long short-term memory (LSTM)-based model for detecting gait events in subjects walking with a pair of custom ankle exoskeletons. This new model was developed by multiplying the weighted output of two LSTM models, one with GRF data as the input and one with heel marker height as input. The gait events were found using peak detection on the final model output. Compared to other machine learning algorithms, which use roughly 8:1 training-to-testing data ratio, this new model required only a 1:79 training-to-testing data ratio. The algorithm successfully detected over 98% of events within 16ms of manually identified events, which is greater than the 65% to 98% detection rate of previous LSTM algorithms. The high robustness and low training requirements of the model makes it an excellent tool for automated gait event detection for both exoskeleton-assisted and unassisted walking of healthy human subjects.more » « less
-
ObjectiveThis study examined the interaction of gait-synchronized vibrotactile cues with an active ankle exoskeleton that provides plantarflexion assistance. BackgroundAn exoskeleton that augments gait may support collaboration through feedback to the user about the state of the exoskeleton or characteristics of the task. MethodsParticipants ( N = 16) were provided combinations of torque assistance and vibrotactile cues at pre-specified time points in late swing and early stance while walking on a self-paced treadmill. Participants were either given explicit instructions ( N = 8) or were allowed to freely interpret (N=8) how to coordinate with cues. ResultsFor the free interpretation group, the data support an 8% increase in stride length and 14% increase in speed with exoskeleton torque across cue timing, as well as a 5% increase in stride length and 7% increase in speed with only vibrotactile cues. When given explicit instructions, participants modulated speed according to cue timing—increasing speed by 17% at cues in late swing and decreasing speed 11% at cues in early stance compared to no cue when exoskeleton torque was off. When torque was on, participants with explicit instructions had reduced changes in speed. ConclusionThese findings support that the presence of torque mitigates how cues were used and highlights the importance of explicit instructions for haptic cuing. Interpreting cues while walking with an exoskeleton may increase cognitive load, influencing overall human-exoskeleton performance for novice users. ApplicationInteractions between haptic feedback and exoskeleton use during gait can inform future feedback designs to support coordination between users and exoskeletons.more » « less
-
Abstract BackgroundSoft robotic exosuits can provide partial dorsiflexor and plantarflexor support in parallel with paretic muscles to improve poststroke walking capacity. Previous results indicate that baseline walking ability may impact a user’s ability to leverage the exosuit assistance, while the effects on continuous walking, walking stability, and muscle slacking have not been evaluated. Here we evaluated the effects of a portable ankle exosuit during continuous comfortable overground walking in 19 individuals with chronic hemiparesis. We also compared two speed-based subgroups (threshold: 0.93 m/s) to address poststroke heterogeneity. MethodsWe refined a previously developed portable lightweight soft exosuit to support continuous overground walking. We compared five minutes of continuous walking in a laboratory with the exosuit to walking without the exosuit in terms of ground clearance, foot landing and propulsion, as well as the energy cost of transport, walking stability and plantarflexor muscle slacking. ResultsExosuit assistance was associated with improvements in the targeted gait impairments: 22% increase in ground clearance during swing, 5° increase in foot-to-floor angle at initial contact, and 22% increase in the center-of-mass propulsion during push-off. The improvements in propulsion and foot landing contributed to a 6.7% (0.04 m/s) increase in walking speed (R2 = 0.82). This enhancement in gait function was achieved without deterioration in muscle effort, stability or cost of transport. Subgroup analyses revealed that all individuals profited from ground clearance support, but slower individuals leveraged plantarflexor assistance to improve propulsion by 35% to walk 13% faster, while faster individuals did not change either. ConclusionsThe immediate restorative benefits of the exosuit presented here underline its promise for rehabilitative gait training in poststroke individuals.more » « less
-
Abstract BackgroundElectromyography (EMG)-based audiovisual biofeedback systems, developed and tested in research settings to train neuromuscular control in patient populations such as cerebral palsy (CP), have inherent implementation obstacles that may limit their translation to clinical practice. The purpose of this study was to design and validate an alternative, plantar pressure-based biofeedback system for improving ankle plantar flexor recruitment during walking in individuals with CP. MethodsEight individuals with CP (11–18 years old) were recruited to test both an EMG-based and a plantar pressure-based biofeedback system while walking. Ankle plantar flexor muscle recruitment, co-contraction at the ankle, and lower limb kinematics were compared between the two systems and relative to baseline walking. ResultsRelative to baseline walking, both biofeedback systems yielded significant increases in mean soleus (43–58%, p < 0.05), and mean (68–70%, p < 0.05) and peak (71–82%, p < 0.05) medial gastrocnemius activation, with no differences between the two systems and strong relationships for all primary outcome variables (R = 0.89–0.94). Ankle co-contraction significantly increased relative to baseline only with the EMG-based system (52%, p = 0.03). ConclusionThese findings support future research on functional training with this simple, low-cost biofeedback modality.more » « less
An official website of the United States government

