skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Tropical Origins of the Pacific Meridional Mode Associated With the Nonlinear Interaction of ENSO With the Annual Cycle
Abstract

The Pacific Meridional Mode (PMM) has long been associated with extra‐tropical air‐sea coupling processes, which are thought to influence the development of El Niño‐Southern Oscillation (ENSO). Here we show that the PMM on seasonal to interannual timescales is closely associated with a newly proposed tropical mode known as the ENSO Combination mode (C‐mode), which arises from the nonlinear interaction between ENSO and the background annual cycle in the deep tropics. The PMM exhibits a remarkable resemblance with the C‐mode in atmospheric patterns, spectral characteristics, and local impacts. Based on a simple Hasselmann‐type model, we further demonstrate that the C‐mode‐related atmospheric anomalies can effectively drive PMM‐like sea surface temperature anomalies. As the C‐mode captures seasonally modulated ENSO characteristics, the seasonal‐to‐interannual PMM variability could naturally establish a connection with ENSO, thereby offering an alternative explanation for the observed relationship between PMM and ENSO.

 
more » « less
Award ID(s):
2219257
PAR ID:
10530658
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
24
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Pacific–North American (PNA) teleconnection pattern is one of the prominent atmospheric circulation modes in the extratropical Northern Hemisphere, and its seasonal to interannual predictability is suggested to originate from El Niño–Southern Oscillation (ENSO). Intriguingly, the PNA teleconnection pattern exhibits variance at near-annual frequencies, which is related to a rapid phase reversal of the PNA pattern during ENSO years, whereas the ENSO sea surface temperature (SST) anomalies in the tropical Pacific are evolving much slower in time. This distinct seasonal feature of the PNA pattern can be explained by an amplitude modulation of the interannual ENSO signal by the annual cycle (i.e., the ENSO combination mode). The ENSO-related seasonal phase transition of the PNA pattern is reproduced well in an atmospheric general circulation model when both the background SST annual cycle and ENSO SST anomalies are prescribed. In contrast, this characteristic seasonal evolution of the PNA pattern is absent when the tropical Pacific background SST annual cycle is not considered in the modeling experiments. The background SST annual cycle in the tropical Pacific modulates the ENSO-associated tropical Pacific convection response, leading to a rapid enhancement of convection anomalies in winter. The enhanced convection results in a fast establishment of the large-scale PNA teleconnection during ENSO years. The dynamics of this ENSO–annual cycle interaction fills an important gap in our understanding of the seasonally modulated PNA teleconnection pattern during ENSO years. 
    more » « less
  2. Abstract

    El Niño–Southern Oscillation (ENSO), the dominant mode of interannual variability in the tropical Pacific, is well known to affect the extratropical climate via atmospheric teleconnections. Extratropical atmospheric variability may in turn influence the occurrence of ENSO events. The winter North Pacific Oscillation (NPO), as the secondary dominant mode of atmospheric variability over the North Pacific, has been recognized as a potential precursor for ENSO development. This study demonstrates that the preexisting winter NPO signal is primarily excited by sea surface temperature (SST) anomalies in the equatorial western–central Pacific. During ENSO years with a preceding winter NPO signal, which accounts for approximately 60% of ENSO events observed in 1979–2021, significant SST anomalies emerge in the equatorial western–central Pacific in the preceding autumn and winter. The concurrent presence of local convection anomalies can act as a catalyst for NPO-like atmospheric circulation anomalies. In contrast, during other ENSO years, significant SST anomalies are not observed in the equatorial western–central Pacific during the preceding winter, and correspondingly, the NPO signal is absent. Ensemble simulations using an atmospheric general circulation model driven by observed SST anomalies in the tropical western–central Pacific can well reproduce the interannual variability of observed NPO. Therefore, an alternative explanation for the observed NPO–ENSO relationship is that the preceding winter NPO is a companion to ENSO development, driven by the precursory SST signal in the equatorial western–central Pacific. Our results suggest that the lagged relationship between ENSO and the NPO involves a tropical–extratropical two-way coupling rather than a purely stochastic forcing of the extratropical atmosphere on ENSO.

     
    more » « less
  3. Abstract

    Variations of sea-surface temperature (SST) in the subtropical North Pacific have received considerable attention due to their potential role as a precursor of El Niño-Southern Oscillation (ENSO) events in the tropical Pacific as well as their role in regional climate impacts. These subtropical SST variations, known as the North Pacific Meridional Mode (PMM), are thought to be triggered by extratropical atmospheric forcing and amplified by air-sea coupling involving surface winds, evaporation, and SST. The PMM is often defined through a statistical technique called maximum covariance analysis (MCA) that identifies patterns of maximum covariability between SST and surface winds. Here we show that SST alone is sufficient to reproduce the MCA-based PMM index with near-perfect correlation. This dominance of the SST suggests that the MCA-based definition of the PMM may not be ideally suited for capturing two-way wind-SST interaction or, alternatively, that this interaction is relatively weak. We further show that the MCA-based PMM definition conflates intrinsic subtropical and remote ENSO variability, thereby undermining its interpretation as an ENSO precursor. Our findings indicate that, while air-sea coupling may be important for variability in the subtropical North Pacific, it cannot be reliably identified by the MCA-based definition of the PMM. This highlights the need for refined tools to diagnose variability in the subtropical North Pacific.

     
    more » « less
  4. Abstract

    The small sample size of tropical cyclone (TC) genesis in the observations prevents us from fully characterizing its spatiotemporal variations. Here we take advantage of a large ensemble of 60-km-resolution atmospheric simulations to address this issue over the northwest Pacific (NWP) during 1951–2010. The variations in annual TC genesis density are explored separately on interannual and decadal time scales. The interannual variability is dominated by two leading modes. One is characterized by a dipole pattern, and its temporal evolution is closely linked to the developing ENSO. The other mode features high loadings in the central part of the basin, with out-of-phase changes near the equator and date line, and tends to occur during ENSO decay years. On decadal time scales, TC genesis density variability is primarily controlled by one mode, which exhibits an east–west dipole pattern with strong signals confined to south of 20°N and is tied to the interdecadal Pacific oscillation–like sea surface temperature anomalies. Further, we investigate the seasonal evolution of the ENSO effect on TC genesis density. The results highlight the distinct impacts of the two types of ENSO (i.e., eastern Pacific vs central Pacific) on TC genesis density in the NWP during a specific season and show the strong seasonal dependency of the TC genesis response to ENSO. Although the results from the observations are not as prominent as those from the simulations because of the small sample size, the high consistency between them demonstrates the fidelity of the model in reproducing TC statistics and variability in the observations.

     
    more » « less
  5. Abstract Previous studies have shown that nonlinear atmospheric interactions between ENSO and the warm pool annual cycle generates a combination mode (C-mode), which is responsible for the termination of strong El Niño events and the development of the anomalous anticyclone over the western North Pacific (WNP). However, the C-mode has experienced a remarkable decadal change in its characteristics around the early 2000s. The C-mode in both pre- and post-2000 exhibits its characteristic anomalous atmospheric circulation meridional asymmetry but with somewhat different spatial structures and time scales. During 1979–99, the C-mode pattern featured prominent westerly surface wind anomalies in the southeastern tropical Pacific and anticyclonic anomalies over the WNP. In contrast, the C-mode-associated westerly anomalies were shifted farther westward to the central Pacific and the WNP anticyclone was farther westward extended and weaker after 2000. These different C-mode patterns were accompanied by distinct climate impacts over the Indo-Pacific region. The decadal differences of the C-mode are tightly connected with the ENSO regime shift around 2000; that is, the occurrence of central Pacific (CP) El Niño events with quasi-biennial and decadal periodicities increased while the occurrence of eastern Pacific (EP) El Niño events with quasi-quadrennial periodicity decreased. The associated near-annual combination tone periodicities of the C-mode also changed in accordance with these changes in the dominant ENSO frequency between the two time periods. Numerical model experiments further confirm the impacts of the ENSO regime shift on the C-mode characteristics. These results have important implications for understanding the C-mode dynamics and improving predictions of its climate impacts. 
    more » « less