Fluid‐driven artificial muscles exhibit a behavior similar to biological muscles which makes them attractive as soft actuators for wearable assistive robots. However, state‐of‐the‐art fluidic systems typically face challenges to meet the multifaceted needs of soft wearable robots. First, soft robots are usually constrained to tethered pressure sources or bulky configurations based on flow control valves for delivery and control of high assistive forces. Second, although some soft robots exhibit untethered operation, they are significantly limited to low force capabilities. Herein, an electrohydraulic actuation system that enables both untethered and high‐force soft wearable robots is presented. This solution is achieved through a twofold design approach. First, a simplified direct‐drive actuation paradigm composed of motor, gear‐pump, and hydraulic artificial muscle (HAM) is proposed, which allows for a compact and lightweight (1.6 kg) valveless design. Second, a fluidic engine composed of a high‐torque motor with a custom‐designed gear pump is created, which is capable of generating high pressure (up to 0.75 MPa) to drive the HAM in delivering high forces (580 N). Experimental results show that the developed fluidic engine significantly outperforms state‐of‐the‐art systems in mechanical efficiency and suggest opportunities for effective deployment in soft wearable robots for human assistance.
more »
« less
Maximizing Consistent High-Force Output for Shape Memory Alloy Artificial Muscles in Soft Robots
Soft robots have immense potential given their safer contact with environments, but challenges in soft actuator forces and design constraints have limited scaling up soft robots to larger sizes. Electrothermal shape memory alloy (SMA) artificial muscles have the potential to create these large forces and high displacements, but consistently using these muscles under a well-defined model, in-situ in a soft robot, remains an open challenge. This article provides a system for maintaining the highest-possible consistent SMA forces, over long lifetimes, by combining a fatigue testing protocol with a supervisory control system for the muscles' internal temperature state. We introduce a soft limb with swappable SMA muscles, and deploy the limb in a blocked-force test to quantify the maximum applied force at different temperatures over different cyclic fatigue lifetimes. Then, by applying an invariance-based control system to maintain temperatures under our proposed long-life limit, we demonstrate consistent high forces in a practical task over hundreds of cycles. The method we developed allows for practical implementation of SMAs in soft robots through characterizing and controlling their behavior in-situ, and provides a method to impose limits that maximize their consistent, repeatable behavior.
more »
« less
- Award ID(s):
- 2209783
- PAR ID:
- 10530813
- Publisher / Repository:
- IEEE
- Date Published:
- ISSN:
- 2769-4534
- ISBN:
- 979-8-3503-8181-8
- Page Range / eLocation ID:
- 213 to 219
- Format(s):
- Medium: X
- Location:
- San Diego, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Robots built from soft materials have the potential for intuitively-safer interactions with humans and the environment. However, soft robots’ embodiments have many sources of failure that could lead to unsafe conditions in closed-loop control, such as degradation of sensors or fracture of actuators. This letter proposes a fault detection system for sensors attached to artificial muscle actuators that satisfies a formal safety condition. Our approach combines redundant sensing, model-based state estimation, and Gaussian process regression to determine when one sensor’s reading statistically diverges from another, indicating a fault condition. We apply the approach to electrothermal shape memory alloy (SMA) artificial muscles, demonstrating that our method prevents the overheating and fire damage risk that could otherwise occur. Experiments show that when the muscle’s nominal sensor (temperature via a thermocouple) is fractured from the robot, the redundant sensor (electrical resistance) combined with our method prevents violation of state constraints. Deploying this system in real-world human-robot interaction could help make soft robots more robust and reliable.more » « less
-
In this paper, we investigate the design of pennate topology fluidic artificial muscle bundles under spatial and operating constraints. Soft fluidic actuators are of great interest to roboticists and engineers due to their potential for inherent compliance and safe human-robot interaction. McKibben fluidic artificial muscles (FAMs) are soft fluidic actuators that are especially attractive due to their high force-to-weight ratio, inherent flexibility, relatively inexpensive construction, and muscle-like force-contraction behavior. Observations of natural muscles of equivalent cross-sectional area have indicated that muscles with a pennate fiber configuration can achieve higher output forces as compared to the parallel configuration due to larger physiological cross-sectional area (PCSA). However, this is not universally true because the contraction and rotation behavior of individual actuator units (fibers) are both key factors contributing to situations where bipennate muscle configurations are advantageous as compared to parallel muscle configurations. This paper analytically explores a design case for pennate topology artificial muscle bundles that maximize fiber radius. The findings can provide insights on optimizing artificial muscle topologies under spatial constraints. Furthermore, the study can be extended to evaluate muscle topology implications on work capacity and efficiency for tracking a desired dynamic motion.more » « less
-
Perching significantly enhances the energy efficiency and operational versatility of aerial robots. This article introduces a passive and tunable perching mechanism designed for smooth surfaces. The design features a bistable mechanism (BM) with a soft suction cup, augmented by two sets of shape memory alloy (SMA) actuators for active tuning. The BM enables rapid attachment upon surface contact. A set of SMA wires can increase the BM's triggering force to handle high contact speeds, while a set of SMA springs attached to the suction cup's edges can pull the cup to handle orientation misalignment. Experiments are conducted to characterize how the SMA actuators influence the BM's triggering force and the suction cup's displacement under continuous steady‐state low‐voltage heating. Additional experiments demonstrate fast tuning using momentary high‐voltage heating of the SMA actuators to enhance energy efficiency. The mechanism enables successful perching on smooth surfaces and adapt to varying contact speeds and misalignments when properly tuned for three scenarios: pendulum‐based perching, ground perching, and ceiling perching. With its tuning capability, the perching mechanism can alleviate the need for precise motion control for an aerial robot during perching, expanding the applications of aerial robots in areas like environmental monitoring or infrastructure inspection.more » « less
-
Abstract Wearable robotics, also called exoskeletons, have been engineered for human-centered assistance for decades. They provide assistive technologies for maintaining and improving patients’ natural capabilities towards self-independence and also enable new therapy solutions for rehabilitation towards pervasive health. Upper limb exoskeletons can significantly enhance human manipulation with environments, which is crucial to patients’ independence, self-esteem, and quality of life. For long-term use in both in-hospital and at-home settings, there are still needs for new technologies with high comfort, biocompatibility, and operability. The recent progress in soft robotics has initiated soft exoskeletons (also called exosuits), which are based on controllable and compliant materials and structures. Remarkable literature reviews have been performed for rigid exoskeletons ranging from robot design to different practical applications. Due to the emerging state, few have been focused on soft upper limb exoskeletons. This paper aims to provide a systematic review of the recent progress in wearable upper limb robotics including both rigid and soft exoskeletons with a focus on their designs and applications in various pervasive healthcare settings. The technical needs for wearable robots are carefully reviewed and the assistance and rehabilitation that can be enhanced by wearable robotics are particularly discussed. The knowledge from rigid wearable robots may provide practical experience and inspire new ideas for soft exoskeleton designs. We also discuss the challenges and opportunities of wearable assistive robotics for pervasive health.more » « less
An official website of the United States government

