In this paper, we present an efficient strategy to enumerate the number of k-cycles, g≤k<2g, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth g using its polynomial parity-check matrix H. This strategy works for both (dv,dc)-regular and irregular QC-LDPC codes. In this approach, we note that the mth power of the polynomial adjacency matrix can be used to describe walks of length m in the protograph and can therefore be sufficiently described by the matrices Bm(H)(HHT)m/2H(m2), where m≥0. We provide formulas for the number of k-cycles, Nk, by just taking into account repetitions in some multisets constructed from the matrices Bm(H). This approach is shown to have low complexity. For example, in the case of QC-LDPC codes based on the 3×nv fully-connected protograph, the complexity of determining Nk, for k=4,6,8,10 and 12, is O(nv2log(N)), O(nv2log(nv)log(N)), O(nv4log4(nv)log(N)), O(nv4log(nv)log(N)) and O(nv6log6(nv)log(N)), respectively. The complexity, depending logarithmically on the lifting factor N, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes.
more »
« less
Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields
For every prime p > 0, every n > 0 and κ = O(log n), we show the existence of an unsatisfiable system of polynomial equations over O(n log n) variables of degree O(log n) such that any Polynomial Calculus refutation over 𝔽_p with M extension variables, each depending on at most κ original variables requires size exp(Ω(n²)/10^κ(M + n log n))
more »
« less
- Award ID(s):
- 2212135
- PAR ID:
- 10531032
- Editor(s):
- Ta-Shma, Amnon
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 264
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-282-2
- Page Range / eLocation ID:
- 264-264
- Subject(s) / Keyword(s):
- Proof complexity Algebraic proof systems Polynomial Calculus Extension variables AC⁰[p]-Frege Theory of computation → Proof complexity
- Format(s):
- Medium: X Size: 24 pages; 854548 bytes Other: application/pdf
- Size(s):
- 24 pages 854548 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Directed Steiner Tree (DST) is a central problem in combinatorial optimization and theoretical computer science: Given a directed graph G = (V, E) with edge costs c ∈ ℝ_{≥ 0}^E, a root r ∈ V and k terminals K ⊆ V, we need to output a minimum-cost arborescence in G that contains an rrightarrow t path for every t ∈ K. Recently, Grandoni, Laekhanukit and Li, and independently Ghuge and Nagarajan, gave quasi-polynomial time O(log²k/log log k)-approximation algorithms for the problem, which are tight under popular complexity assumptions. In this paper, we consider the more general Degree-Bounded Directed Steiner Tree (DB-DST) problem, where we are additionally given a degree bound d_v on each vertex v ∈ V, and we require that every vertex v in the output tree has at most d_v children. We give a quasi-polynomial time (O(log n log k), O(log² n))-bicriteria approximation: The algorithm produces a solution with cost at most O(log nlog k) times the cost of the optimum solution that violates the degree constraints by at most a factor of O(log²n). This is the first non-trivial result for the problem. While our cost-guarantee is nearly optimal, the degree violation factor of O(log²n) is an O(log n)-factor away from the approximation lower bound of Ω(log n) from the Set Cover hardness. The hardness result holds even on the special case of the Degree-Bounded Group Steiner Tree problem on trees (DB-GST-T). With the hope of closing the gap, we study the question of whether the degree violation factor can be made tight for this special case. We answer the question in the affirmative by giving an (O(log nlog k), O(log n))-bicriteria approximation algorithm for DB-GST-T.more » « less
-
Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph G = (V,E), a root vertex r and a set S ⊆ V of k terminals. The goal is to find a min-cost subgraph that connects r to each of the terminals. DST admits an O(log² k/log log k)-approximation in quasi-polynomial time [Grandoni et al., 2022; Rohan Ghuge and Viswanath Nagarajan, 2022], and an O(k^{ε})-approximation for any fixed ε > 0 in polynomial-time [Alexander Zelikovsky, 1997; Moses Charikar et al., 1999]. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [Zachary Friggstad and Ramin Mousavi, 2023] obtained a simple and elegant polynomial-time O(log k)-approximation for DST in planar digraphs via Thorup’s shortest path separator theorem [Thorup, 2004]. We build on their work and obtain several new results on DST and related problems. - We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in [Zachary Friggstad and Ramin Mousavi, 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree [Naveen Garg et al., 2000], Covering Steiner Tree [Goran Konjevod et al., 2002] and the Polymatroid Steiner Tree [Gruia Călinescu and Alexander Zelikovsky, 2005] problems in planar digraphs. All these problems are hard to approximate to within a factor of Ω(log² n/log log n) even in trees [Eran Halperin and Robert Krauthgamer, 2003; Grandoni et al., 2022]. - We prove that the natural cut-based LP relaxation for DST has an integrality gap of O(log² k) in planar digraphs. This is in contrast to general graphs where the integrality gap of this LP is known to be Ω(√k) [Leonid Zosin and Samir Khuller, 2002] and Ω(n^{δ}) for some fixed δ > 0 [Shi Li and Bundit Laekhanukit, 2022]. - We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the O(R + log k) approximation of [Zachary Friggstad and Ramin Mousavi, 2023] when R = ω(log² k).more » « less
-
Censor-Hillel, Keren; Grandoni, Fabrizio; Ouaknine, Joel; Puppis, Gabriele (Ed.)We study the problem of indexing a text T[1..n] to support pattern matching with wildcards. The input of a query is a pattern P[1..m] containing h ∈ [0, k] wildcard (a.k.a. don't care) characters and the output is the set of occurrences of P in T (i.e., starting positions of substrings of T that matches P), where k = o(log n) is fixed at index construction. A classic solution by Cole et al. [STOC 2004] provides an index with space complexity O(n ⋅ (clog n)^k/k!)) and query time O(m+2^h log log n+occ), where c > 1 is a constant, and occ denotes the number of occurrences of P in T. We introduce a new data structure that significantly reduces space usage for highly repetitive texts while maintaining efficient query processing. Its space (in words) and query time are as follows: O(δ log (n/δ)⋅ c^k (1+(log^k (δ log n))/k!)) and O((m+2^h +occ)log n)) The parameter δ, known as substring complexity, is a recently introduced measure of repetitiveness that serves as a unifying and lower-bounding metric for several popular measures, including the number of phrases in the LZ77 factorization (denoted by z) and the number of runs in the Burrows-Wheeler Transform (denoted by r). Moreover, O(δ log (n/δ)) represents the optimal space required to encode the data in terms of n and δ, helping us see how close our space is to the minimum required. In another trade-off, we match the query time of Cole et al.’s index using O(n+δ log (n/δ) ⋅ (clogδ)^{k+ε}/k!) space, where ε > 0 is an arbitrarily small constant. We also demonstrate how these techniques can be applied to a more general indexing problem, where the query pattern includes k-gaps (a gap can be interpreted as a contiguous sequence of wildcard characters).more » « less
-
In this paper, we present an efficient strategy to enumerate the number of k-cycles, g ≤ k < +2g, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth g using its polynomial parity-check matrix H. This strategy works for both (n c , n v )-regular and irregular QC-LDPC codes. In this approach, we note that the mth power of the polynomial adjacency matrix can be used to describe walks of length m in the protograph and can therefore be sufficiently described by the matrices Bm(H)≜(HH⊤)⌊m/2⌋H(mmod2), where m ≥ 0. For example, in the case of QC-LDPC codes based on the 3 × n v fully-connected protograph, the complexity of determining the number of k-cycles, Nk, for k = 4, 6 and 8, is O(n2vlog(N)), O(n2vlog(nv)log(N)) and O(n4vlog4(nv)log(N)), respectively. The complexity, depending logarithmically on the lifting factor N, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes.more » « less
An official website of the United States government

