skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Birefringent coating to remove polarization aberrations
Polarization aberrations are found in most optical components due to a materials-differing response tos- andp-polarizations. This differing response can manifest either as diattenuation, retardance, or both. Correction of polarization aberrations, such as these, are critical in many applications such as interferometry, polarimetry, display, and high contrast imaging, including astronomy. In this work, compensators based on liquid crystal polymer and anti-reflection thin-films are presented to correct polarization aberrations in both transmission and reflection configurations. Our method is versatile, allowing for good correction in transmission and reflection due to optical components possessing differing diattenuation and retardance dispersions. Through simulation and experimental validation we show two designs, one correcting the polarization aberrations of a dichroic spectral filter over a 170nm wavelength band, and the other correcting the polarization aberration of an aluminum-coated mirror over a 400nm wavelength band and a 55-degree cone of angles. The measured performance of the polarization aberration compensators shows good agreement with theory.  more » « less
Award ID(s):
1918260
PAR ID:
10531106
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
12
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 20629
Size(s):
Article No. 20629
Sponsoring Org:
National Science Foundation
More Like this
  1. Polarization aberrations are found in most optical components due to a materials differing response to s- and p-polarizations. This differing response can manifest either as diattenuation, retardance, or both. Correction of polarization aberrations, such as these, are critical in many applications such as interferometry, polarimetry, display, and high contrast imaging, including astronomy. In this work, compensators based on liquid crystal polymer and anti-reflection thin-films are presented to correct polarization aberrations in both transmission and reflection configurations. Our method is versatile, allowing for good correction in transmission and reflection due to optical components possessing differing diattenuation and retardance dispersions. Through simulation and experimental validation we show two designs, one correcting the polarization aberrations of a dichroic spectral filter over a 170nm wavelength band, and the other correcting the polarization aberration of an aluminum-coated mirror over a 400nm wavelength band and a 55-degree cone of angles. The measured performance of the polarization aberration compensators shows good agreement with theory. 
    more » « less
  2. Abstract Polarimetric data provide key insights into infrared emission mechanisms in the inner disks of young stellar objects (YSOs) and the details of dust formation around asymptotic giant branch (AGB) stars. While polarization measurements are well-established in radio interferometry, they remain challenging at visible and near-infrared wavelengths, due to the significant time-variable birefringence introduced by the complex optical beam train. In this study, we characterize instrumental polarization effects within the optical path of the Center for High Angular Resolution Astronomy (CHARA) Array, focusing on theH-band MIRC-X andK-band MYSTIC beam combiners. Using the Jones matrix formalism, we developed a comprehensive model describing diattenuation and retardance across the array. By applying this model to an unpolarized calibrator, we derived the instrumental parameters for both MIRC-X and MYSTIC. Our results show differential diattenuation consistent with ≥97% reflectivity per aluminum-coated surface at 45° incidence. The differential retardance exhibits small wavelength-dependent variations, in some cases larger than we expected. Notably, telescope W2 exhibits a significantly larger phase shift in the Coudé path, attributable to a fixed aluminum mirror (M4) used in place of deformable mirrors present on the other telescopes during the observing run. We also identify misalignments in the LiNbO3birefringent compensator plates on S1 (MIRC-X) and W2 (MYSTIC). After correcting for night-to-night offsets, we achieve calibration accuracies of ±3.4% in visibility ratio and ± 1 . ° 4 in differential phase for MIRC-X, and ±5.9% and ± 2 . ° 4 , respectively, for MYSTIC. Given that the differential intrinsic polarization of spatially resolved sources, such as AGB stars and YSOs, typically greater than these instrumental uncertainties, our results demonstrate that CHARA is now capable of achieving high-accuracy measurements of intrinsic polarization in astrophysical targets. 
    more » « less
  3. Optical coherence microscopy (OCM) uses interferometric detection to capture the complex optical field with high sensitivity, which enables computational wavefront retrieval using back-scattered light from the sample. Compared to a conventional wavefront sensor, aberration sensing with OCM via computational adaptive optics (CAO) leverages coherence and confocal gating to obtain signals from the focus with less cross-talk from other depths or transverse locations within the field-of-view. Here, we present an investigation of the performance of CAO-based aberration sensing in simulation, bead phantoms, andex vivomouse brain tissue. We demonstrate that, due to the influence of the double-pass confocal OCM imaging geometry on the shape of computed pupil functions, computational sensing of high-order aberrations can suffer from signal attenuation in certain spatial-frequency bands and shape similarity with lower order counterparts. However, by sensing and correcting only low-order aberrations (astigmatism, coma, and trefoil), we still successfully corrected tissue-induced aberrations, leading to 3× increase in OCM signal intensity at a depth of ∼0.9 mm in a freshly dissectedex vivomouse brain. 
    more » « less
  4. Many correlations exist between spectral reflectance or transmission with various phenotypic responses from plants. Of interest to us are metabolic characteristics, namely, how the various polarimetric components of plants may correlate to underlying environmental, metabolic, and genotypic differences among different varieties within a given species, as conducted during large field experimental trials. In this paper, we overview a portable Mueller matrix imaging spectropolarimeter, optimized for field use, by combining a temporal and spatial modulation scheme. Key aspects of the design include minimizing the measurement time while maximizing the signal-to-noise ratio by mitigating systematic error. This was achieved while maintaining an imaging capability across multiple measurement wavelengths, spanning the blue to near-infrared spectral region (405–730 nm). To this end, we present our optimization procedure, simulations, and calibration methods. Validation results, which were taken in redundant and non-redundant measurement configurations, indicated that the polarimeter provides average absolute errors of (5.3±2.2)×10−3and (7.1±3.1)×10−3, respectively. Finally, we provide preliminary field data (depolarization, retardance, and diattenuation) to establish baselines of barren and non-barrenZea maizehybrids (G90 variety), as captured from various leaf and canopy positions during our summer 2022 field experiments. Results indicate that subtle variations in retardance and diattenuation versus leaf canopy position may be present before they are clearly visible in the spectral transmission. 
    more » « less
  5. Third harmonic generation (THG) provides a valuable, label-free approach to imaging biological systems. To date, THG microscopy has been performed using point-scanning methods that rely on intensity measurements lacking phase information of the complex field. We report the first demonstration, to the best of our knowledge, of THG holographic microscopy and the reconstruction of the complex THG signal field with spatial synthetic aperture imaging. Phase distortions arising from measurement-to-measurement fluctuations and imaging components cause optical aberrations in the reconstructed THG field. We have developed an aberration-correction algorithm that estimates and corrects these phase distortions to reconstruct the spatial synthetic aperture THG field without optical aberrations. 
    more » « less