skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broadband second harmonic generation of counter-propagating ultrashort pulses
Counter-propagating ultrafast pulses can disrupt the phase of harmonic generation, and offer a means to achieve quasi-phase matching in processes like high-order harmonic generation. Optimizing this process requires accurate modeling. Using second harmonic generation (SHG) as a simpler and more accessible proxy, we compare the results of two numerical simulations to experimental measurements of SHG with counter-propagating pulses. The first follows previous theoretical work in assuming a quasi-CW pulse and solving the nonlinear wave equation in the time-domain. However, we find that adapting a frequency-domain model to account for the broadband nature of ultrafast pulses better reproduces the salient features we observe in our experimental results.  more » « less
Award ID(s):
1653079
PAR ID:
10531224
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
11
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 17922
Size(s):
Article No. 17922
Sponsoring Org:
National Science Foundation
More Like this
  1. Quasi-phase-matched interactions in waveguides with quadratic nonlinearities enable highly efficient nonlinear frequency conversion. In this paper, we demonstrate the first generation of devices that combine the dispersion engineering available in nanophotonic waveguides with quasi-phase-matched nonlinear interactions available in periodically poled lithium niobate (PPLN). This combination enables quasi-static interactions of femtosecond pulses, reducing the pulse energy requirements by several orders of magnitude compared to conventional devices, from picojoules to femtojoules. We experimentally demonstrate two effects associated with second harmonic generation (SHG). First, we observe efficient quasi-phase-matched SHG with <<#comment/> 100 f J of pulse energy. Second, in the limit of strong phase-mismatch, we observe spectral broadening of both harmonics with as little as 2 pJ of pulse energy. These results lay a foundation for a new class of nonlinear devices, in which coengineering of dispersion with quasi-phase-matching enables efficient nonlinear optics at the femtojoule level. 
    more » « less
  2. Generating wavelength-tunable picosecond laser pulses from an ultrafast laser source is essential for femtosecond stimulated Raman scattering (FSRS) measurements. Etalon filters produce narrowband (picosecond) pulses with an asymmetric temporal profile that is ideal for stimulated resonance Raman excitation. However, direct spectral filtering of femtosecond laser pulses is typically limited to the laser’s fundamental and harmonic frequencies due to very low transmission of broad bandwidth pulses through an etalon. Here, we show that a single etalon filter (15 cm−1 bandwidth; 172 cm−1 free spectral range) provides an efficient and tunable option for generating Raman pump pulses over a wide range of wavelengths when used in combination with an optical parametric amplifier and a second harmonic generation (SHG) crystal that has an appropriate phase-matching bandwidth for partial spectral compression before the etalon. Tuning the SHG wavelength to match individual transmission lines of the etalon filter gives asymmetric picosecond pump pulses over a range of 460–650 nm. Importantly, the SHG crystal length determines the temporal rise time of the filtered pulse, which is an important property for reducing background and increasing Raman signals compared with symmetric pulses having the same total energy. We examine the wavelength-dependent trade-off between spectral narrowing via SHG and the asymmetric pulse shape after transmission through the etalon. This approach provides a relatively simple and efficient method to generate tunable pump pulses with the optimum temporal profile for resonance-enhanced FSRS measurements across the visible region of the spectrum. 
    more » « less
  3. Periodically poled second-order nonlinear materials with submicrometer periods are important for the development of quasi-phase matched backward-wave nonlinear optical processes. Interactions involving counter-propagating waves exhibit many unique properties and enable devices such as backward second harmonic generators, mirrorless optical parametric oscillators, and narrow-band quantum entangled photon sources. Fabrication of dense ferroelectric domain gratings in lithium niobate remains challenging, however, due to lateral domain spreading and merging. Here, we report submicrometer periodic poling of ion-sliced x-cut magnesium oxide doped lithium niobate thin films. Electric-field poling is performed using multiple bipolar preconditioning pulses that improve the poling yield and domain uniformity. The internal field is found to decrease with each preconditioning poling cycle. The poled domains are characterized by piezoresponse force microscopy. A fundamental period of 747 nm is achieved. 
    more » « less
  4. We introduce a concept for efficient optical parametric amplification (OPA) based on simultaneously phase-matched idler second harmonic generation (SHG), which together exhibits the dynamical behavior of parametric amplification but with damped conversion-back-conversion cycles. This enables amplification efficiency exceeding that of conventional OPA by several-fold for femtosecond and picosecond signal pulses with bell-shaped intensity profiles by allowing a near-uniform spatiotemporal depletion of the pump wave. We develop a Duffing oscillator model that unifies the description of conventional OPA and amplification accompanied by idler photon displacement by either linear absorption or SHG. A spatiotemporal analysis of devices based on birefringent or superlattice quasi-phase matching in common bulk media predicts energy conversion up to 55%. 
    more » « less
  5. We use 2.4-micron laser pulses to produce second-harmonic generation via random quasi-phase-matching in ZnS. Using a frequency-resolved optical gating system, we reconstruct the complex temporal profile of the second-harmonic pulses. 
    more » « less